Duchenne muscular dystrophy (DMD) is caused by the lack of functional dystrophin protein, most commonly as a result of a range of out-of-frame mutations in the DMD gene. Modulation of pre-mRNA splicing with antisense oligonucleotides (AOs) to restore the reading frame has been demonstrated in vitro and in vivo, such that truncated but functional dystrophin is expressed. AO-induced skipping of exon 51 of the DMD gene, which could treat 13% of DMD patients, has now progressed to clinical trials.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frame shifting and nonsense mutations in the dystrophin gene. Through skipping of an (additional) exon from the pre-mRNA, the reading frame can be restored. This can be achieved with antisense oligonucleotides (AONs), which induce exon skipping by binding to splice sites or splice enhancer sites.
View Article and Find Full Text PDFBackground: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs.
View Article and Find Full Text PDFBackground: The specific skipping of an exon, induced by antisense oligonucleotides (AON) during splicing, has shown to be a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach is mutation dependent. The skipping of an entire stretch of exons (e.
View Article and Find Full Text PDFAntisense oligonucleotides (AONs) can interfere with mRNA processing through RNase H-mediated degradation, translational arrest, or modulation of splicing. The antisense approach relies on AONs to efficiently bind to target sequences and depends on AON length, sequence content, secondary structure, thermodynamic properties, and target accessibility. We here performed a retrospective analysis of a series of 156 AONs (104 effective, 52 ineffective) previously designed and evaluated for splice modulation of the dystrophin transcript.
View Article and Find Full Text PDFAs small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional dystrophin proteins and potential conversion of severe DMD into milder Becker muscular dystrophy (BMD) phenotypes. We have previously described 37 exon-internal AONs that induce skipping of 14 DMD exons in human control myotube cultures.
View Article and Find Full Text PDF