Publications by authors named "Christa Jakopitsch"

Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms.

View Article and Find Full Text PDF

Recently, it was demonstrated that bifunctional catalase-peroxidases (KatGs) are found not only in archaea and bacteria but also in lower eukaryotes. Structural studies and preliminary biochemical data of the secreted KatG from the rice pathogen Magnaporthe grisea (MagKatG2) suggested both similar and novel features when compared to those of the prokaryotic counterparts studied so far. In this work, we demonstrate the role of the autocatalytically formed redox-active Trp140-Tyr273-Met299 adduct of MagKatG2 in (i) the maintenance of the active site architecture, (ii) the catalysis of hydrogen peroxide dismutation, and (iii) the protein stability by comparing wild-type MagKatG2 with the single mutants Trp140Phe, Tyr273Phe, and Met299Ala.

View Article and Find Full Text PDF

Background And Purpose: The actions of hydrogen sulfide in human physiology have been extensively studied and, although it is an essential mediator of many biological functions, the underlying molecular mechanisms of its actions are ill-defined. To elucidate the roles of sulfide in inflammation, we have investigated its interactions with human myeloperoxidase (MPO), a major contributor to inflammatory oxidative stress.

Experimental Approach: The interactions of sulfide and MPO were investigated using electron paramagnetic resonance, electronic circular dichroism, UV-vis and stopped-flow spectroscopies.

View Article and Find Full Text PDF

Chlorite dismutases (Clds) are heme b-containing prokaryotic oxidoreductases that catalyze the reduction of chlorite to chloride with the concomitant release of molecular oxygen. Over time, they are irreversibly inactivated. To elucidate the mechanism of inactivation and investigate the role of the postulated intermediate hypochlorite, the pentameric chlorite dismutase of "Candidatus Nitrospira defluvii" (NdCld) and two variants (having the conserved distal arginine 173 exchanged with alanine and lysine) were recombinantly produced in Escherichia coli.

View Article and Find Full Text PDF

This study demonstrates that heme peroxidases from different superfamilies react differently with chlorite. In contrast to plant peroxidases, like horseradish peroxidase (HRP), the mammalian counterparts myeloperoxidase (MPO) and lactoperoxidase (LPO) are rapidly and irreversibly inactivated by chlorite in the micromolar concentration range. Chlorite acts as efficient one-electron donor for Compound I and Compound II of MPO and LPO and reacts with the corresponding ferric resting states in a biphasic manner.

View Article and Find Full Text PDF

Peroxidasins represent the subfamily 2 of the peroxidase-cyclooxygenase superfamily and are closely related to chordata peroxidases (subfamily 1) and peroxinectins (subfamily 3). They are multidomain proteins containing a heme peroxidase domain with high homology to human lactoperoxidase that mediates one- and two-electron oxidation reactions. Additional domains of the secreted and glycosylated metalloproteins are type C-like immunoglobulin domains, typical leucine-rich repeats, as well as a von Willebrand factor C module.

View Article and Find Full Text PDF

Catalase-peroxidases (KatGs) are bifunctional heme enzymes widely spread in archaea, bacteria, and lower eukaryotes. Here we present the first crystal structure (1.55 Å resolution) of an eukaryotic KatG, the extracellular or secreted enzyme from the phytopathogenic fungus Magnaporthe grisea.

View Article and Find Full Text PDF

In the absence of exogenous electron donors monofunctional heme peroxidases can slowly degrade hydrogen peroxide following a mechanism different from monofunctional catalases. This pseudo-catalase cycle involves several redox intermediates including Compounds I, II and III, hydrogen peroxide reduction and oxidation reactions as well as release of both dioxygen and superoxide. The rate of decay of oxyferrous complex determines the rate-limiting step and the enzymes' resistance to inactivation.

View Article and Find Full Text PDF

Catalase-peroxidases are the only heme peroxidases with substantial hydrogen peroxide dismutation activity. In order to understand the role of the redox chemistry in their bifunctional activity, catalatically-active and inactive mutant proteins have been probed in spectroelectrochemical experiments. In detail, wild-type KatG from Synechocystis has been compared with variants with (i) disrupted KatG-typical adduct (Trp122-Tyr249-Met275), (ii) mutation of the catalytic distal His123-Arg119 pair, and (iii) altered accessibility to the heme cavity (Asp152, Ser335) and modified charge at the substrate channel entrance (Glu253).

View Article and Find Full Text PDF

Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases that exhibit peroxidase and substantial catalase activities. Nevertheless, the reaction pathway of hydrogen peroxide dismutation, including the electronic structure of the redox intermediate that actually oxidizes H(2)O(2), is not clearly defined. Several mutant proteins with diminished overall catalase but wild-type-like peroxidase activity have been described in the last years.

View Article and Find Full Text PDF

Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO.

View Article and Find Full Text PDF

The authors have reconstructed the phylogenetic relationships of the main evolutionary lines of mammalian heme containing peroxidases. The sequences of intensively investigated human myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, which participate in host defence against infections, were aligned together with newly found open reading frames coding for highly similar putative peroxidase domains in all kingdoms of life. The evolutionary relationships were reconstructed using neighbor-joining, maximum parsimony, and maximum likelihood methods.

View Article and Find Full Text PDF

It is demonstrated that horseradish peroxidase (HRP) mixed with chlorite follows the whole peroxidase cycle. Chlorite mediates the two-electron oxidation of ferric HRP to compound I (k(1)) thereby releasing hypochlorous acid. Furthermore, chlorite acts as one-electron reductant of both compound I (k(2)) and compound II (k(3)) forming chlorine dioxide.

View Article and Find Full Text PDF

Hydrogen peroxide features in many biological oxidative processes and must be continuously degraded enzymatically either via a catalatic or a peroxidatic mechanism. For this purpose ancestral bacteria evolved a battery of different heme and non-heme enzymes, among which heme-containing catalase-peroxidases (CP) are one of the most widespread representatives. They are unique since they can follow both H(2)O(2)-degrading mechanisms, the catalase activity being clearly dominant.

View Article and Find Full Text PDF

In human heme peroxidases the prosthetic group is covalently attached to the protein via two ester linkages between conserved glutamate and aspartate residues and modified methyl groups on pyrrole rings A and C. Here, monomeric recombinant myeloperoxidase (MPO) and the variants D94V and D94N were produced in Chinese hamster ovary cell lines. Disruption of the Asp(94) to heme ester bond decreased the one-electron reduction potential E'(0) [Fe(III)/Fe(II)] from 1 to -55 mV at pH 7.

View Article and Find Full Text PDF

Despite catalyzing the same reaction (2 H2O2-->2 H2O+O2) heme-containing monofunctional catalases and bifunctional catalase-peroxidases (KatGs) do not share sequence or structural similarities raising the question of whether or not the reaction pathways are similar or different. The production of dioxygen from hydrogen peroxide by monofunctional catalases has been shown to be a two-step process involving the redox intermediate compound I which oxidizes H2O2 directly to O2. In order to investigate the origin of O2 released in KatG mediated H2O2 degradation we performed a gas chromatography-mass spectrometry investigation of the evolved O2 from a 50:50 mixture of H2(18)O2/H2(16)O2 solution containing KatGs from Mycobacterium tuberculosis and Synechocystis PCC 6803.

View Article and Find Full Text PDF

Crystal structures and mass spectrometric analyses of catalase-peroxidases (KatGs) from different organisms revealed the existence of a peculiar distal Met-Tyr-Trp cross-link. The adduct appears to be important for the catalase but not the peroxidase activity of bifunctional KatG. To examine the effect of the adduct on enzyme redox properties and functions, we have determined the thermodynamics of ferric reduction for wild-type KatG and KatG(Y249F), whose tyrosine-to-phenylalanine mutation prevents cross-link formation.

View Article and Find Full Text PDF

The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions.

View Article and Find Full Text PDF

Catalase-peroxidases (KatGs) exhibit peroxidase and substantial catalase activities similar to monofunctional catalases. Crystal structures of four different KatGs reveal the presence of a peroxidase-conserved proximal and distal heme pocket together with features unique to KatG. To gain insight into their structure-function properties, many variants were produced and very similar results were obtained irrespective of the origin of the KatG mutated.

View Article and Find Full Text PDF

Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.

View Article and Find Full Text PDF

Catalase-peroxidases (KatG) are bifunctional heme peroxidases with an overwhelming catalatic activity. The structures show that the buried heme b is connected to the exterior of the enzyme by a main channel built up by KatG-specific loops named large loop LL1 and LL2, the former containing the highly conserved sequence Met-Gly-Leu-Ile-Tyr-Val-Asn-Pro-Glu-Gly. LL1 residues Ile248, Asn251, Pro252, and Glu253 of KatG from Synechocystis are the focus of this study because of their exposure to the solute matrix of the access channel.

View Article and Find Full Text PDF

Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders.

View Article and Find Full Text PDF

In human myeloperoxidase the heme is covalently attached to the protein via two ester linkages between the carboxyl groups of Glu242 and Asp94 and modified methyl groups on pyrrole rings A and C of the heme as well as a sulfonium ion linkage between the sulfur atom of Met243 and the beta-carbon of the vinyl group on pyrrole ring A. In the present study, wild-type recombinant myeloperoxidase (recMPO) and the variant Glu242Gln were produced in Chinese hamster ovary cells and investigated in a comparative sequential-mixing stopped-flow study in order to elucidate the role of the Glu242-heme ester linkage in the individual reaction steps of both the halogenation and peroxidase cycle. Disruption of the ester bond increased heme flexibility, blue shifted the UV-vis spectrum, and, compared with recMPO, decelerated cyanide binding (1.

View Article and Find Full Text PDF