Background: Metastatic breast cancer poses great challenge in cancer treatment. N-dihydrogalactochitosan (GC) is a novel immunoadjuvant that stimulates systemic immune responses when administered intratumourally following local tumour ablation. A combination of photothermal therapy (PTT) and GC, referred to as localized ablative immunotherapy (LAIT), extended animal survival and generates an activated B cell phenotype in MMTV-PyMT mouse mammary tumour microenvironment (TME).
View Article and Find Full Text PDFB cells have emerged as key regulators in protective cancer immunity. However, the activation pathways induced in B cells during effective immunotherapy are not well understood. We used a novel localized ablative immunotherapy (LAIT), combining photothermal therapy (PTT) with intra-tumor delivery of the immunostimulant N-dihydrogalactochitosan (GC), to treat mice bearing mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT).
View Article and Find Full Text PDFBacterial coinfection and COVID-19 have been reported in pediatric populations. We describe a case of Sydenham's chorea, which is exceedingly rare in developed countries, with concurrent COVID-19. Discussed here is the clinical course of an 8-year-old COVID-positive female with pure Sydenham's chorea and subclinical carditis from acute rheumatic fever.
View Article and Find Full Text PDFCancer immunotherapy continues to make headway as a treatment for advanced stage tumors, revealing an urgent need to understand the fundamentals of anti-tumor immune responses. Noteworthy is a scarcity of data pertaining to the breadth and specificity of tumor-specific T cell responses in metastatic breast cancer. Autochthonous transgenic models of breast cancer display spontaneous metastasis in the FVB/NJ mouse strain, yet a lack of knowledge regarding tumor-bound MHC/peptide immune epitopes in this mouse model limits the characterization of tumor-specific T cell responses, and the mechanisms that regulate T cell responses in the metastatic setting.
View Article and Find Full Text PDFWith the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes.
View Article and Find Full Text PDFTransglutaminases are a superfamily of isoenzymes found in cells and plasma. These enzymes catalyze the formation of ε-N-(γ-glutamyl)-lysyl crosslinks between proteins. Cystamine blocks transglutaminase activity and is used in vitro in human samples and in vivo in mice and rats in studies of coagulation, immune dysfunction, and inflammatory disease.
View Article and Find Full Text PDFMetastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP).
View Article and Find Full Text PDF