The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora infects a wide range of insect hosts with the aid of its mutualistic bacteria Photorhabdus luminescens. While the mutualistic relationship between H. bacteriophora and P.
View Article and Find Full Text PDFWhile transposon-based transgenesis is widely used in various emerging model organisms, its relatively low transposition rate in butterflies and moths has hindered its use for routine genetic transformation in Lepidoptera. Here, we tested the suitability of a codon-optimized transposase () in mRNA form to deliver and integrate transgenic cassettes into the genome of the pantry moth . Co-injection of mRNA with donor plasmids successfully integrated 1.
View Article and Find Full Text PDFEntomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects that live in the soil. The main characteristic of their life cycle is the mutualistic association with the bacteria Photorhabdus and Xenorhabdus, respectively. The nematode parasites are able to locate and enter suitable insect hosts, subvert the insect immune response, and multiply efficiently to produce the next generation that will actively hunt new insect prey to infect.
View Article and Find Full Text PDFThe pantry moth is a worldwide pest of stored food products and a promising laboratory model system for lepidopteran functional genomics. Here we describe efficient methods for precise genome editing in this insect. A spontaneous recessive white-eyed phenotype maps to a frameshift deletion (.
View Article and Find Full Text PDFAs large-scale outdoor production cannot be done in complete containment, cultures are (more) open for bacteria, which may affect the productivity and stability of the algae production process. We investigated the bacterial diversity in two indoor reactors and four pilot-scale outdoor reactors for the production of Nannochloropsis sp. CCAP211/78 spanning four months of operation from July to October.
View Article and Find Full Text PDFAs the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H.
View Article and Find Full Text PDFThe innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates.
View Article and Find Full Text PDFThe host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g.
View Article and Find Full Text PDFInsects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism.
View Article and Find Full Text PDFInsects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity.
View Article and Find Full Text PDFResults Probl Cell Differ
January 2021
Entomopathogenic nematodes are parasitic organisms with an exceptional capacity to infect rapidly and efficiently a wide range of insect species. Their distinct pathogenic properties have established entomopathogenic nematodes as supreme biocontrol agents of insects as well as excellent models to simulate and dissect the molecular and physiological bases of conserved strategies employed by parasitic nematodes that cause infectious diseases in humans. The extreme infectivity of entomopathogenic nematodes is due in part to the presence of certain species of Gram-negative bacteria that live in mutualistic symbiosis during the infective juvenile stage, which forms the central part of the nematode life cycle.
View Article and Find Full Text PDFEndosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction.
View Article and Find Full Text PDFPhotorhabdus bacteria are potent pathogens of insects and humans. To elucidate the infection strategies Photorhabdus employs to subvert the host innate immune response, it is critical to use model organisms that permit the genetic dissection of the dynamics involved in host-pathogen interactions. Here, we employed the fruit fly Drosophila melanogaster to interrogate the role of the immune deficiency (Imd) pathway receptor peptidoglycan recognition protein LE (PGRP-LE) in the regulation of the fly's response to the insect pathogen Photorhabdus luminescens and the insect/human pathogen P.
View Article and Find Full Text PDFLipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of adult flies with non-pathogenic , the extracellular bacterial pathogen or the facultative intracellular pathogen results in intestinal steatosis marked by lipid accumulation in the midgut.
View Article and Find Full Text PDFThe common fruit fly Drosophila melanogaster is a powerful model for studying signaling pathway regulation. Conserved signaling pathways underlying physiological processes signify evolutionary relationship between organisms and the nature of the mechanisms they control. This study explores the cross-talk between the well-characterized nuclear factor kappa B (NF-κB) innate immune signaling pathways and transforming growth factor beta (TGF-β) signaling pathway in response to parasitic nematode infection in Drosophila.
View Article and Find Full Text PDFDrosophila melanogaster relies on an evolutionarily conserved innate immune system to protect itself from potentially deadly pathogens. One of the earliest pathways activated after injury or infection is the melanization pathway, which is responsible for synthesizing and depositing melanin at the site of injury, or onto invading microbes. Three genes, PPO1-3, encoding prophenoloxidase (PPO), an inactive precursor of phenoloxidase (PO), are responsible for the production of melanin after their activation via immune challenge.
View Article and Find Full Text PDFImmune priming in insects involves an initial challenge with a non-pathogenic microbe or exposure to a low dose of pathogenic microorganisms, which provides a certain degree of protection against a subsequent pathogenic infection. The protective effect of insect immune priming has been linked to the activation of humoral or cellular features of the innate immune response during the preliminary challenge, and these effects might last long enough to promote the survival of the infected animal. The fruit fly Drosophila melanogaster is a superb model to dissect immune priming processes in insects due to the availability of molecular and genetic tools, and the comprehensive understanding of the innate immune response in this organism.
View Article and Find Full Text PDFThe common fruit fly Drosophila melanogaster is an exceptional model for dissecting innate immunity. However, our knowledge on responses to parasitic nematode infections still lags behind. Recent studies have demonstrated that the well-conserved TGF-β signaling pathway participates in immune processes of the fly, including the anti-nematode response.
View Article and Find Full Text PDFThe common fruit fly, Drosophila melanogaster is an outstanding model to analyze the regulation of conserved signaling pathways. In this study, we examined whether signaling components in the Bone Morphogenic Protein (BMP) branch of the TGF-β signaling pathway are involved in the response to wounding caused by either sterile injury or infection by parasitic nematodes in D. melanogaster adult flies.
View Article and Find Full Text PDF