Publications by authors named "Christa E Muller-Sieburg"

The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans.

View Article and Find Full Text PDF

For decades, hematopoietic stem cells (HSCs) were thought to be a homogeneous population of cells with flexible behavior. Now a new picture has emerged: The HSC compartment consists of several subpopulations of HSCs each with distinct, preprogrammed differentiation and proliferation behaviors. These programs are epigenetically fixed and are stably bequeathed to all daughter HSCs on self-renewal.

View Article and Find Full Text PDF

A single hematopoietic stem cell (HSC) can generate a clone, consisting of daughter HSCs and differentiated progeny, which can sustain the hematopoietic system of multiple hosts for a long time. At the same time, this massive expansion potential must be restrained to prevent abnormal, leukemic proliferation. We used an interdisciplinary approach, combining transplantation assays with mathematical and computational methods, to systematically analyze the proliferative potential of individual HSCs.

View Article and Find Full Text PDF

Whether hematopoietic stem cells (HSCs) change with aging has been controversial. Previously, we showed that the HSC compartment in young mice consists of distinct subsets, each with predetermined self-renewal and differentiation behavior. Three classes of HSCs can be distinguished based on their differentiation programs: lymphoid biased, balanced, and myeloid biased.

View Article and Find Full Text PDF

Purpose Of Review: Hematopoietic stem cells are functionally heterogeneous even when isolated as phenotypically homogenous populations. How this heterogeneity is generated is incompletely understood. Several models have been formulated to explain the generation of diversity.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) display extensive heterogeneity in their behavior even when isolated as phenotypically homogeneous populations. It is not clear whether this heterogeneity reflects inherently diverse subsets of HSCs or a homogeneous population of HSCs diversified by their response to different external stimuli. To address this, we analyzed 97 individual HSCs in long-term transplantation assays.

View Article and Find Full Text PDF

Discerning significant relationships in small data sets remains challenging. We introduce here the Hamming distance matrix and show that it is a quantitative classifier of similarities among short time-series. Its elements are derived by computing a modified form of the Hamming distance of pairs of symbol sequences obtained from the original data sets.

View Article and Find Full Text PDF

The adult hematopoietic stem cell (HSC) compartment contains a substantial population of lineage-biased (Lin-bi) HSCs. Lin-bi HSCs generate cells of all hematopoietic lineages, albeit with skewed ratios of lymphoid to myeloid cells. The biased ratios are stable through serial transplantation, demonstrating that lineage bias is an inherent function of the HSCs.

View Article and Find Full Text PDF

The ability to predict accurately the number of hematopoietic stem cells (HSCs) in a graft is important for the success of HSC transplantation. Limiting dilution analysis (LDA) in vitro and in vivo is widely used to enumerate HSCs. However, there have been few attempts to standardize this approach.

View Article and Find Full Text PDF

Most current theories assume that self-renewal and differentiation of hematolymphoid stem cells (HSCs) is randomly regulated by intrinsic and environmental influences. A direct corollary of these tenets is that self-renewal will continuously generate functionally heterogeneous daughter HSCs. Decisions about self-renewal versus commitment are made by individual, single HSCs and, thus, require examination on the clonal level.

View Article and Find Full Text PDF