Publications by authors named "Chrispeels M"

Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells.

View Article and Find Full Text PDF

Background And Aims: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought.

View Article and Find Full Text PDF

When chilling-sensitive plants are chilled, root hydraulic conductance (L(o)) declines precipitously; L(o) also declines in chilling-tolerant plants, but it subsequently recovers, whereas in chilling-sensitive plants it does not. As a result, the chilling-sensitive plants dry out and may die. Using a chilling-sensitive and a chilling-tolerant maize genotype we investigated the effect of chilling on L(o), and its relationship to osmotic water permeability of isolated root cortex protoplasts, aquaporin gene expression, aquaporin abundance, and aquaporin phosphorylation, hydrogen peroxide (H(2)O(2)) accumulation in the roots and electrolyte leakage from the roots.

View Article and Find Full Text PDF

In perennial plants, freeze-thaw cycles during the winter months can induce the formation of air bubbles in xylem vessels, leading to changes in their hydraulic conductivity. Refilling of embolized xylem vessels requires an osmotic force that is created by the accumulation of soluble sugars in the vessels. Low water potential leads to water movement from the parenchyma cells into the xylem vessels.

View Article and Find Full Text PDF

Different lines of evidence suggest that specific events during the cell cycle may be mediated by a heterotrimeric G-protein activated by a cognate G-protein coupled receptor. However, coupling between the only known Galpha-subunit of the heterotrimeric G-protein (GPA1) and the only putative G-protein coupled receptor (GCR1) of plants has never been shown. Using a variety of approaches, we show here that GCR1-enhanced thymidine incorporation into DNA depends on an increase in phosphatidylinositol-specific phospholipase C activity and an elevation of inositol 1,4,5-trisphosphate levels in the cells.

View Article and Find Full Text PDF

Some wild accessions of the common bean (Phaseolus vulgaris) contain a family of proteins called arcelins, that are toxic to the larvae of certain bruchid species. Among the six allelic variants of arcelin tested so far, arcelin-5 and arcelin-1 confer the highest level of resistance against the Mexican bean weevil, Zabrotes subfasciatus. The same proteins are not toxic to the bean weevil, Acanthoscelides obtectus, which is also a serious pest of cultivated beans.

View Article and Find Full Text PDF

We analyzed the breadth of the unfolded protein response (UPR) in Arabidopsis using gene expression analysis with Affymetrix GeneChips. With tunicamycin and DTT as endoplasmic reticulum (ER) stress-inducing agents, we identified sets of UPR genes that were induced or repressed by both stresses. The proteins encoded by most of the upregulated genes function as part of the secretory system and comprise chaperones, vesicle transport proteins, and ER-associated degradation proteins.

View Article and Find Full Text PDF

The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.

View Article and Find Full Text PDF

Gene-family evolution mostly relies on gene duplication coupled with functional diversification of gene products. However, other evolutionary mechanisms may also be important in generating protein diversity. The ubiquitous membrane intrinsic protein (MIP) gene family is an excellent model system to search for such alternative evolutionary mechanisms.

View Article and Find Full Text PDF

Although signaling through heterotrimeric G proteins has been extensively studied in eukaryotes, there is little information about this important signaling pathway in plants. We observed that expression of GCR1, the gene encoding the only known (but still putative) G protein-coupled receptor of Arabidopsis thaliana, is modulated during the cell cycle and during plant development. Overexpression of GCR1 in tobacco (Nicotiana tabacum) BY-2 cells caused an increase in thymidine incorporation and in the mitotic index of aphidicolin synchronized cells.

View Article and Find Full Text PDF

In contrast to angiosperms, pines and other gymnosperms form well-developed suspensors in somatic embryogenic cultures. This creates a useful system to study suspensor biology. In a study of gene expression during the early stages of conifer embryogenesis, we identified a transcript, PtNIP1;1, that is abundant in immature loblolly pine (Pinus taeda) zygotic and somatic embryos, but is undetectable in later-stage embryos, megagametophytes, and roots, stems, and needles from 1 year-old seedlings.

View Article and Find Full Text PDF

The transpiration stream that passes through a plant may follow an apoplastic route, with low resistance to flow, or a cell-to-cell route, in which cellular membranes impede water flow. However, passage of water through membranes can be facilitated by aquaporins thereby decreasing resistance. We investigated the relationship between transpiration, which can be down-regulated by abscisic acid (ABA) or by high humidity, and the osmotic water permeability (P(os)) of protoplasts.

View Article and Find Full Text PDF

A major response of eukaryotic cells to the presence of unfolded proteins in the lumen of the endoplasmic reticulum (ER) is to activate genes that encode ER-located molecular chaperones, such as the binding protein. This response, called the unfolded protein response, requires the transduction of a signal from the ER to the nucleus. In yeast (Saccharomyces cerevisiae) and mammalian cells, an ER-located transmembrane receptor protein kinase/ribonuclease called Ire1, with a sensor domain in the lumen of the ER, is the first component of this pathway.

View Article and Find Full Text PDF

Aquaporins (AQPs) are an ancient family of channel proteins that transport water and neutral solutes through a pore and are found in all eukaryotes and most prokaryotes. A comparison of the amino acid sequences and phylogenetic analysis of 31 full-length cDNAs of maize (Zea mays) AQPs shows that they comprise four different groups of highly divergent proteins. We have classified them as plasma membrane intinsic proteins (PIPs), tonoplast intrinsic proteins, Nod26-like intrinsic proteins, and small and basic intrinsic proteins.

View Article and Find Full Text PDF

Boron is an essential micronutrient for plant growth and the boron content of plants differs greatly, but the mechanism(s) of its uptake into cells is not known. Boron is present in the soil solution as boric acid and it is in this form that it enters the roots. We determined the boron permeability coefficient of purified plasma membrane vesicles obtained from squash (Cucurbita pepo) roots and found it to be 3 x 10(-7) +/-1.

View Article and Find Full Text PDF

A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin).

View Article and Find Full Text PDF

We report the characterization and cDNA cloning of two alpha-amylase isozymes from larvae of the Western corn rootworm (Diabrotica virgifera virgifera LeConte). Larvae raised on artificial media have very low levels of amylase activity, and much higher levels are found in larvae raised on maize seedlings. At pH 5.

View Article and Find Full Text PDF