Publications by authors named "Chrishtop V"

Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical interventions in the head and neck can affect how ischemic changes occur in the brain, impacting both their nature and location.
  • The review focuses on comparing the timing of basic cellular and molecular processes involved in these changes.
  • Criteria for selecting animal models include oxidative stress in brain cells, blood-brain barrier issues, glial activation, neuroinflammation, changes in blood vessel growth, and the model's reproducibility.
View Article and Find Full Text PDF

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations.

View Article and Find Full Text PDF

Nanotoxicological studies using existing models of normal cells and animals often encounter a paradox: retention of nanoparticles in intracellular compartments for a long time is not accompanied by any significant toxicological effects. Can we expect that the revealed changes will be not harmful after translation to practice, outside of a sterile laboratory and ideally healthy organisms? Age-associated and pathological processes can affect target organs, metabolism, and detoxification in the mononuclear phagocyte system organs and change biodistribution routes, thus making the use of nanomaterial not safe. The potential solution to this issue can be testing the toxic properties of nanoparticles in animal models with chronic diseases.

View Article and Find Full Text PDF

This paper is the continuation of our previous work on the ability of biocomposites based on sol-gel alumina (boehmite) to promote skin recovery from burns and atrophic scars. The present study describes the increasing of the cytoplasma volume and the number of filopodias of HDF cells, which for the first time indicates their proliferation on the alumina itself and on alumina-based biocomposite. Studies in vivo confirm the efficiency of the composite in the treatment of atrophic scars.

View Article and Find Full Text PDF

The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered.

View Article and Find Full Text PDF

Titanium dioxide (TiO) is one of the most widely used materials in resistive switching applications, including random-access memory, neuromorphic computing, biohybrid interfaces, and sensors. Most of these applications are still at an early stage of development and have technological challenges and a lack of fundamental comprehension. Furthermore, the functional memristive properties of TiO thin films are heavily dependent on their processing methods, including the synthesis, fabrication, and post-fabrication treatment.

View Article and Find Full Text PDF

Oxidative stress associated with chronic cerebral hypoperfusion is one of the fundamental factors leading to neurodegenerative diseases. To prevent oxidative stress, physical activity is effective. Physical exercise enables development of rehabilitation techniques that can progressively increase patients' stress resistance.

View Article and Find Full Text PDF

Nanostructured drugs are being approved for clinical use, although there is a serious deficit of systematic studies of these materials. Data on toxicity of nanoparticles (NPs) can vary due to different methods of preparation, size, and shape. We investigated the toxicity against cultured human cells, the acute toxicity in mice, and the influence on conjugative transfer of antibiotic resistance genes of clinically relevant NPs such as TiO, ZrO, HfO, TaO, FeO, and AlOOH.

View Article and Find Full Text PDF