Publications by authors named "Chris W M Grant"

The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent 2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and one alpha-helical polypeptide with the sequence acetyl-KK-(LA)11-KK-amide.

View Article and Find Full Text PDF

Selectively deuterated transmembrane peptides comprising alternating leucine-alanine subunits were examined in fluid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy in an effort to gain insight into the behavior of membrane proteins. Two groups of peptides were studied: 21-mers having a 17-amino-acid hydrophobic domain calculated to be close in length to the hydrophobic thickness of 1-palmitoyl-2-oleoyl phosphatidylcholine and 26-mers having a 22-amino-acid hydrophobic domain calculated to exceed the membrane hydrophobic thickness. (2)H NMR spectral features similar to ones observed for transmembrane peptides from single-span receptors of higher animal cells were identified which apparently correspond to effectively monomeric peptide.

View Article and Find Full Text PDF

The transmembrane domains of ErbB receptor tyrosine kinases are monotopic helical structures proposed to be capable of direct side-to-side contact with related receptors. Formation of the resulting homo- or hetero-oligomeric complexes is considered a key step in ligand-mediated signalling. ErbB-2, which has not been observed to form active homo-dimers in a ligand dependent manner, has been implicated as an important partner for formation of hetero-dimers with other ErbB receptors.

View Article and Find Full Text PDF

The transmembrane domains of receptor tyrosine kinases are single-span helical structures suggested to participate directly in the formation of side-to-side receptor homodimers/homooligomers that modulate signal transduction. Transmembrane peptides from the class I receptor tyrosine kinase, ErbB-2, were examined directly by 2H NMR spectroscopy as a means of following such phenomena under the dynamic conditions that characterize fluid, fully hydrated bilayers of natural phospholipids. Appropriate peptides were expressed as 50-mers, containing the transmembrane domain of ErbB-2 plus contiguous stretches of amino acids from the cytoplasmic and extracellular domains.

View Article and Find Full Text PDF