The mechanism underlying the antiepileptic actions of norepinephrine (NE) is unclear with conflicting results. Our objectives are to conclusively delineate the specific adrenergic receptor (AR) involved in attenuating hippocampal CA3 epileptiform activity and assess compounds for lead drug development. We utilized the picrotoxin model of seizure generation in rat brain slices using electrophysiological recordings.
View Article and Find Full Text PDFThe dorsal lateral geniculate nucleus (dLGN) serves as the primary conduit of retinal information to visual cortex. In addition to retinal input, dLGN receives a large feedback projection from layer VI of visual cortex. Such input modulates thalamic signal transmission in different ways that range from gain control to synchronizing network activity in a stimulus-specific manner.
View Article and Find Full Text PDFThe understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors.
View Article and Find Full Text PDFNorepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect.
View Article and Find Full Text PDFNorepinephrine (NE) has demonstrated proconvulsant and antiepileptic properties; however, the specific pharmacology of these actions has not been clearly established. To address this, we studied the effect of NE on hippocampal CA3 epileptiform activity. Frequency changes of burst discharges in response to NE were biphasic; low concentrations increased the number of bursts, while higher concentrations reduced their frequency, suggesting the involvement of multiple adrenergic receptor (AR) types.
View Article and Find Full Text PDFNorepinephrine is an endogenous neurotransmitter distributed throughout the mammalian brain. In higher cortical structures such as the hippocampus, norepinephrine, via beta adrenergic receptor (AR) activation, has been shown to reinforce the cognitive processes of attention and memory. In this study, we investigated the effect of beta1AR activation on hippocampal cornu ammonis 3 (CA3) network activity.
View Article and Find Full Text PDF