Publications by authors named "Chris Trengove"

Complex networks emerging in natural and human-made systems tend to assume small-world structure. Is there a common mechanism underlying their self-organisation? Our computational simulations show that network diffusion (traffic flow or information transfer) steers network evolution towards emergence of complex network structures. The emergence is effectuated through adaptive rewiring: progressive adaptation of structure to use, creating short-cuts where network diffusion is intensive while annihilating underused connections.

View Article and Find Full Text PDF

As a candidate mechanism of neural representation, large numbers of synfire chains can efficiently be embedded in a balanced recurrent cortical network model. Here we study a model in which multiple synfire chains of variable strength are randomly coupled together to form a recurrent system. The system can be implemented both as a large-scale network of integrate-and-fire neurons and as a reduced model.

View Article and Find Full Text PDF

A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected.

View Article and Find Full Text PDF

An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources.

View Article and Find Full Text PDF

Analyzing single trial brain activity remains a challenging problem in the neurosciences. We gain purchase on this problem by focusing on globally synchronous fields in within-trial evoked brain activity, rather than on localized peaks in the trial-averaged evoked response (ER). We analyzed data from three measurement modalities, each with different spatial resolutions: magnetoencephalogram (MEG), electroencephalogram (EEG) and electrocorticogram (ECoG).

View Article and Find Full Text PDF

Synfire chains, sequences of pools linked by feedforward connections, support the propagation of precisely timed spike sequences, or synfire waves. An important question remains, how synfire chains can efficiently be embedded in cortical architecture. We present a model of synfire chain embedding in a cortical scale recurrent network using conductance-based synapses, balanced chains, and variable transmission delays.

View Article and Find Full Text PDF

From a few presentations of an object, perceptual systems are able to extract invariant properties such that novel presentations are immediately recognized. This may be enabled by inferring the set of all representations equivalent under certain transformations. We implemented this principle in a neurodynamic model that stores activity patterns representing transformed versions of the same object in a distributed fashion within maps, such that translation across the map corresponds to the relevant transformation.

View Article and Find Full Text PDF

The synfire chain model of brain organization has received much theoretical attention since its introduction (Abeles, 1982, 1991). However there has been no convincing experimental demonstration of synfire chains due partly to limitations of recording technology but also due to lack of appropriate analytic methods for large scale recordings of parallel spike trains. We have previously published one such method based on intersection of the neural populations active at two different times (Schrader et al.

View Article and Find Full Text PDF