Publications by authors named "Chris Trauernicht"

Background: There have been several proposals by researchers for the introduction of Artificial Intelligence (AI) technology due to its promising role in radiotherapy practice. However, prior to the introduction of the technology, there are certain general recommendations that must be achieved. Also, the current challenges of AI must be addressed.

View Article and Find Full Text PDF

Purpose: To develop and evaluate an automated whole-brain radiotherapy (WBRT) treatment planning pipeline with a deep learning-based auto-contouring and customizable landmark-based field aperture design.

Methods: The pipeline consisted of the following steps: (1) Auto-contour normal structures on computed tomography scans and digitally reconstructed radiographs using deep learning techniques, (2) locate the landmark structures using the beam's-eye-view, (3) generate field apertures based on eight different landmark rules addressing different clinical purposes and physician preferences. Two parallel approaches for generating field apertures were developed for quality control.

View Article and Find Full Text PDF

Purpose: To fully automate CT-based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques.

Methods: We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4-field-box (4-field-box), 3D conformal radiotherapy (3D-CRT), and volumetric modulated arc therapy (VMAT). These auto-planning algorithms were combined with a previously developed auto-contouring system.

View Article and Find Full Text PDF

Purpose: To determine the most accurate similarity metric when using an independent system to verify automatically generated contours.

Methods: A reference autocontouring system (primary system to create clinical contours) and a verification autocontouring system (secondary system to test the primary contours) were used to generate a pair of 6 female pelvic structures (UteroCervix [uterus + cervix], CTVn [nodal clinical target volume (CTV)], PAN [para-aortic lymph nodes], bladder, rectum, and kidneys) on 49 CT scans from our institution and 38 from other institutions. Additionally, clinically acceptable and unacceptable contours were manually generated using the 49 internal CT scans.

View Article and Find Full Text PDF

Purpose: To develop a tool for the automatic contouring of clinical treatment volumes (CTVs) and normal tissues for radiotherapy treatment planning in cervical cancer patients.

Methods: An auto-contouring tool based on convolutional neural networks (CNN) was developed to delineate three cervical CTVs and 11 normal structures (seven OARs, four bony structures) in cervical cancer treatment for use with the Radiation Planning Assistant, a web-based automatic plan generation system. A total of 2254 retrospective clinical computed tomography (CT) scans from a single cancer center and 210 CT scans from a segmentation challenge were used to train and validate the CNN-based auto-contouring tool.

View Article and Find Full Text PDF

The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5q6ssknqjgdvospgb8haqfa2qro3k9uf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once