Skeletal muscle has fiber architectures ranging from simple to complex, alongside variations in fiber-type and neuro-anatomical compartmentalization. However, the functional implications of muscle subdivision into discrete functional units remain poorly understood. The rat medial gastrocnemius has well-characterized regions with distinct architectures and fiber type composition.
View Article and Find Full Text PDFMuscle function changes to meet the varying mechanical demands of locomotion across different gait and grade conditions. A muscle's work output is determined by time-varying patterns of neuromuscular activation, muscle force and muscle length change, but how these patterns change under different conditions in small animals is not well defined. Here, we report the first integrated force-length and activation patterns in rats, a commonly used small animal model, to evaluate the dynamics of two distal hindlimb muscles (medial gastrocnemius and plantaris) across a range of gait (walk, trot and gallop) and grade (level and incline) conditions.
View Article and Find Full Text PDFMany studies have shown that connective tissue linkages can transmit force between synergistic muscles and that such force transmission depends on the position of these muscles relative to each other and on properties of their intermuscular connective tissues. Moving neighboring muscles has been reported to cause longitudinal deformations within passive muscles held at a constant muscle-tendon unit (MTU) length (e.g.
View Article and Find Full Text PDFForce transmission between rat ankle plantar-flexors has been found for physiological muscle lengths and relative positions, but only with all muscles maximally activated. The aims of this study were to assess intermuscular mechanical interactions between ankle plantar-flexors during (i) fully passive conditions, (ii) excitation of soleus (SO), (iii) excitation of lateral gastrocnemius (LG), and (iv) during co-activation of SO, and LG (SO&LG). We assessed effects of proximal lengthening of LG and plantaris (PL) muscles (i.
View Article and Find Full Text PDFSkeletal muscles of the rat anterior crural compartment are mechanically connected by epimuscular myofascial connections, but the relevance for mechanical muscle function within physiological ranges of joint motion is unclear. We evaluated the net effect at the ankle joint of epimuscular myofascial connections between tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the rat (n=8) and determined which anatomical structures may mediate such epimuscular mechanical interactions. We assessed (1) effects of knee angle (i.
View Article and Find Full Text PDFResults from imaging studies and finite element models suggest epimuscular myofascial effects on sarcomere lengths in series within muscle fibers. However, experimental evidence is lacking. We evaluated epimuscular myofascial effects on (1) muscle belly, fiber, and mean sarcomere length and (2) sarcomere length distribution within passive fibers of the rat tibialis anterior (TA) and soleus (SO) muscles.
View Article and Find Full Text PDFTriceps surae muscles are mechanically connected by the shared Achilles tendon and by epimuscular myofascial connections. We aimed to assess the effects of proximal lengthening of gastrocnemius and plantaris muscles, imposed by changes in knee angle, on the magnitude and direction of the 3D ankle moment exerted by the soleus muscle and the mechanical interaction between ankle plantar flexor muscles during co-activation of gastrocnemius muscle, in the rat (N=9). Ankle angle was kept constant (90 deg), whereas knee angle was varied between 60 deg and 130 deg.
View Article and Find Full Text PDFThe Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length.
View Article and Find Full Text PDF