Tracking the state of biodiversity over time is critical to successful conservation, but conventional monitoring schemes tend to be insufficient to adequately quantify how species' abundances and distributions are changing. One solution to this issue is to leverage data generated by citizen scientists, who collect vast quantities of data at temporal and spatial scales that cannot be matched by most traditional monitoring methods. However, the quality of citizen science data can vary greatly.
View Article and Find Full Text PDFThe analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth.
View Article and Find Full Text PDFUbiquitination controls the stability or function of many human proteins, thereby regulating a wide range of physiological processes. In most cases the combinatorial pattern of protein interactions that facilitate substrate recognition or modification remain unclear. Moreover, the efficiency of ubiquitination reactions can be altered by the formation of homo- and heterotypic E3-RING complexes.
View Article and Find Full Text PDFProtein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases.
View Article and Find Full Text PDFMHC class I molecules display peptides from endogenous and viral proteins for immunosurveillance by cytotoxic T lymphocytes (CTL). The importance of the class I pathway is emphasised by the remarkable strategies employed by different viruses to downregulate surface class I and avoid CTL recognition. The K3 gene product from Kaposi's sarcoma-associated herpesvirus (KSHV) is a viral ubiquitin E3 ligase which ubiquitinates and degrades cell surface MHC class I molecules.
View Article and Find Full Text PDF