Publications by authors named "Chris Sammon"

This paper reports adsorption studies of Pb(II) ions onto Bentonite-Chitosan (Bt-Ch) composites or beads when using an I-optimal design experiment approach. Three adsorption factors (pH, adsorbent dosage, and initial concentration) were optimised whilst simultaneously investigating multiple adsorbents. The Bt-Ch composites and beads (type A and B) adsorbents were made using weight ratios 90%/10% and differed characteristically due to their preparation methods of solution blending and precipitation, respectively.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C).

View Article and Find Full Text PDF

In the present study, poly(ethylene--vinyl alcohol) with 44 mol % ethylene content (EVOH) was managed to be processed, for the first time, by electrospinning assisted by the coaxial technology of solvent jacket. In addition to this, different suspensions of cellulose nanocrystals (CNCs), with contents ranging from 0.1 to 1.

View Article and Find Full Text PDF

In the present study, three different newly developed copolymers of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) with 20, 40, and 60 mol % contents in 3-hydroxyvalerate (3HV) were produced by the biotechnological process of mixed microbial cultures (MMCs) using cheese whey (CW), a by-product from the dairy industry, as feedstock. The CW-derived PHBV copolyesters were first purified and then processed by solution electrospinning, yielding fibers of approximately 2 μm in cross-section in all cases. The resultant electrospun PHBV mats were, thereafter, post-processed by annealing at different temperatures, below their maximum of melting, selected according to their 3HV content in order to obtain continuous films based on coalesced fibers, so-called biopapers.

View Article and Find Full Text PDF

The present study reports on the production and characterization of a new biopackaging material made of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) derived from municipal biowaste (MBW) and produced by the mixed bacterial culture technology. After purification and extraction, the MBW-derived PHBV was processed by electrospinning to yield defect-free ultrathin fibers, which were thermally post-treated. Annealing at 130 °C, well below the biopolymer's melting temperature (), successfully yielded a continuous film resulting from coalescence of the electrospun fibrillar morphology, the so-called biopaper, exhibiting enhanced optical and color properties compared to traditional melt compounding routes.

View Article and Find Full Text PDF

Hydrophilic matrices are an effective option for oral controlled release but can face challenges in terms of bioavailability and efficacy when used in conjunction with poorly soluble, weakly basic drugs. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) imaging provides dynamic information relating to the location and chemical nature of both the sustained release matrix and the active pharmaceutical ingredient (API) during hydration/dissolution. In this study, we have identified a model system combining itraconazole (IT), a poorly soluble, weakly basic API that has p in the physiological range, and hydroxypropyl methylcellulose, which is a commonly used oral tablet matrix.

View Article and Find Full Text PDF

This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.

View Article and Find Full Text PDF

Bone loss resulting from degenerative diseases and trauma is a significant clinical burden which is likely to grow exponentially with the aging population. In a number of conditions where pre-formed materials are clinically inappropriate an injectable bone forming hydrogel could be beneficial. The development of an injectable hydrogel to stimulate bone repair and regeneration would have broad clinical impact and economic benefit in a variety of orthopedic clinical applications.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is the leading trigger of low back pain, which causes disability and leads to enormous healthcare toll worldwide. Biological treatment with growth factors has evolved as potential therapy for IVD regeneration. Bone morphogenetic protein 2 (BMP-2) and BMP-7 have shown promise in this regard.

View Article and Find Full Text PDF

A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks by Matrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed.

View Article and Find Full Text PDF

Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II.

View Article and Find Full Text PDF

Nucleus pulposus (NP) replacement offers a minimally invasive alternative to spinal fusion or total disc replacement for the treatment of intervertebral disc (IVD) degeneration. This study aimed to develop a cytocompatible NP replacement material, which is feasible for non-invasive delivery and tunable design, and allows immediate mechanical restoration of the IVD. A bi-phasic polyurethane scaffold was fabricated consisting of a core material with rapid swelling property and a flexible electrospun envelope.

View Article and Find Full Text PDF

For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation.

View Article and Find Full Text PDF

For the first time, we report a series of time resolved images of a single PLGA microparticle undergoing hydrolysis at 70 °C that have been obtained using attenuated total reflectance-Fourier transform infrared spectroscopic (ATR-FTIR) imaging. A novel partially supervised non-linear curve fitting (NLCF) tool was developed to identify and fit peaks to the infrared spectrum obtained from each pixel within the 64 × 64 array. The output from the NLCF was evaluated by comparison with a traditional peak height (PH) data analysis approach and multivariate curve resolution alternating least squares (MCR-ALS) analysis for the same images, in order to understand the limitations and advantages of the NLCF methodology.

View Article and Find Full Text PDF

Sexual offenders are increasingly reported to use condoms while committing the crime, mainly to prevent the transfer of DNA evidence. Although condoms are often removed from the crime scene, vaginal swabs can be taken from the victim to prove the presence of condom lubricants and therefore evidence of corpus delicti. However, late reporting to the police and the tendency of the victim to wash immediately after the crime, may compromise the detection of condom lubricants.

View Article and Find Full Text PDF

A real-time confocal fluorescence imaging method has been developed which allows the critical early stages of gel layer formation in hydroxypropylmethylcellulose (HPMC) matrices to be examined. Congo Red, a fluorophore whose fluorescence is selectively intensified when bound to beta-D-glucopyranosyl sequences, has allowed mapping of hydrated polymer regions within the emerging gel layer, and revealed for the first time, the microstructural sequence of polymer hydration during development of the early gel layer. Liquid penetration and swelling can be examined in unprecedented detail.

View Article and Find Full Text PDF

In this work attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to probe the thermal gelation behavior of aqueous solutions of hydroxypropyl methylcellulose (HPMC), specifically thermal gelation and accompanying precipitation. Cloud point measurements are usually evaluated through turbidity in dilute solutions but the method cannot readily be applied to more concentrated or highly viscous solutions. From the ATR-FTIR data, intensity changes of the nu(CO) band marked the onset of gelation and information about the temperature of gelation and the effect of the gel structure on the water hydrogen bonding network was elucidated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnd2mfa2hbpnuf2hfaf8mrqj4ovkufnvm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once