For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430).
View Article and Find Full Text PDFRationale: The nucleus accumbens (Acb) shell and caudate-putamen nucleus (CPu) are respectively implicated in the motivational and motor effects of dopamine, which are mediated in part through dopamine D₂-like receptors (D₂Rs) and modulated by activation of the cannabinoid-1 receptor (CB₁R). The dopamine D(₂/D3) receptor agonist, quinpirole elicits internalization of D₂Rs in isolated cells; however, dendritic and axonal targeting of D₂Rs may be highly influenced by circuit-dependent changes in vivo and potentially influenced by endogenous CB₁R activation.
Objective: We sought to determine whether quinpirole alters the surface/cytoplasmic partitioning of D₂Rs in striatal neurons in vivo.