Insights into the thermodynamic and kinetic signature of the transient opening of a protein-binding pocket resulting from accommodation of suitable substituents attached to a given parent ligand scaffold are presented. As a target, we selected human aldose reductase, an enzyme involved in the development of late-stage diabetic complications. To recognize a large scope of substrate molecules, this reductase opens a transient specificity pocket.
View Article and Find Full Text PDFThe binding of sulfonamides to human carbonic anhydrase II (hCAII) is a complex and long-debated example of protein-ligand recognition and interaction. In this study, we investigate the para-substituted n-alkyl and hydroxyethylene-benzenesulfonamides, providing a complete reconstruction of their binding pathway to hCAII by means of large-scale molecular dynamics simulations, density functional calculations, surface plasmon resonance (SPR) measurements, and X-ray crystallography experiments. Our analysis shows that the protein-ligand association rate (kon) dramatically increases with the ligand's hydrophobicity, pointing to the existence of a prebinding stage largely stabilized by a favorable packing of the ligand's apolar moieties with the hCAII "hydrophobic wall".
View Article and Find Full Text PDFThe human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2-(3-(4-chloro-3-nitrobenzyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0048, 3) and 2-(2,4-dioxo-3-(2,3,4,5-tetrabromo-6-methoxybenzyl)-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0049, 4), which selectively target these enzymes. Although 3 and 4 share the 3-benzyluracil-1-acetic acid scaffold, they have different substituents in their aryl moieties.
View Article and Find Full Text PDFFifteen compounds, sharing an indole-1-acetic acid moiety as a common fragment, were selected from commercial databases for testing aldose reductase inhibition. 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (13) was the most promising inhibitor, with an IC50 in the submicromolar range and high selectivity, relative to aldehyde reductase. The crystal structure of aldose reductase complexed with 13 revealed an interaction pattern explaining its high affinity.
View Article and Find Full Text PDF