Publications by authors named "Chris Reason"

South Africa (SA) is highly vulnerable to the effects of drought on the environment, economy, and society. However, its effect on human health remains unclear. Understanding the mortality risk associated with different types of droughts in different population groups and by specific causes would help clarify the potential mechanisms involved.

View Article and Find Full Text PDF

A Lagrangian analysis is applied to identify the main moisture source areas associated with atmospheric rivers (ARs) making landfall along the west coast of South Africa during the extended austral winter months from 1980 to 2014. The results show that areas that provide the anomalous uptake of moisture can be categorized into four regions: (1) the South Atlantic Ocean between 10°S and 30°S, (2) a clear local maximum in the eastern South Atlantic, (3) a continental source of anomalous uptake to the north of the Western Cape, and (4) over South America at a distance of more than 7000 km from the target region. It emerges that the South American moisture source can be linked to a particular phase of the South American low-level jet, known as a no Chaco jet event (NCJE), which transports moisture to the western and central South Atlantic basin.

View Article and Find Full Text PDF

Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified.

View Article and Find Full Text PDF

Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways.

View Article and Find Full Text PDF