The design, synthesis, and biological evaluation of potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are reported. A novel series of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones were designed using a combination of protein structure-based drug design, molecular modeling, and structure-activity relationships (SAR). These novel submicromolar inhibitors possess a tricyclic ring system conformationally restricting the benzamide in the preferred cis orientation.
View Article and Find Full Text PDFA series of novel compounds have been designed that are potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), and the activity and physical properties have been characterized. The new structural classes, 3,4,5,6-tetrahydro-1H-azepino[5,4,3-cd]indol-6-ones and 3,4-dihydropyrrolo[4,3,2-de]isoquinolin-5-(1H)-ones, have conformationally locked benzamide cores that specifically interact with the PARP-1 protein. The compounds have been evaluated with in vitro cellular assays that measure the ability of the PARP-1 inhibitors to enhance the effect of cytotoxic agents against cancer cell lines.
View Article and Find Full Text PDF