Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against in a murine model when administered via different routes.
View Article and Find Full Text PDFPromising clinical efficacy results have generated considerable enthusiasm for the potential impact of adjuvant-containing subunit tuberculosis vaccines. The development of a thermostable tuberculosis vaccine formulation could have significant benefits on both the cost and feasibility of global vaccine distribution. The tuberculosis vaccine candidate ID93 + GLA-SE has reached Phase 2 clinical testing, demonstrating safety and immunogenicity as a two-vial point-of-care mixture.
View Article and Find Full Text PDFParticle engineering via spray drying was used to develop a dry powder presentation of an adjuvanted tuberculosis vaccine candidate. This presentation utilizing a trileucine-trehalose excipient system was designed to be both thermostable and suitable for respiratory delivery. The stability of the spray-dried vaccine powder was assessed over one year at various storage temperatures (-20, 5, 25, 40, 50 °C) in terms of powder stability, adjuvant stability, and antigen stability.
View Article and Find Full Text PDFSpray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles.
View Article and Find Full Text PDFProtection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying.
View Article and Find Full Text PDFTissue remodeling associated with thyroid-associated ophthalmopathy (TAO) involves the complex interplay between resident cells (endothelium, vascular smooth muscle, extraocular muscle, and fibroblasts) and those recruited to the orbit, including members of the "professional" immune system. Inflammation early in the disease can later culminate in fibrosis and diminished extraocular muscle motility. TAO remains a poorly understood process, in large part because access to tissues early in the disease is limited and because no robust and complete animal models of Graves' disease have yet been devised.
View Article and Find Full Text PDF