Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis.
View Article and Find Full Text PDFBackground: Triglyceride-rich lipoproteins and remnants (TRL/remnants) have a causal, but not yet quantified, relationship with coronary heart disease (CHD): myocardial infarction plus revascularization.
Objectives: The authors sought to estimate TRL/remnant per-particle atherogenicity, investigate causal relationships with inflammation, and determine whether differences in the atherogenicity of TRL/remnants and low-density lipoprotein (LDL) impact the causal association of non-high-density lipoprotein cholesterol (non-HDL-C) with CHD.
Methods: Single nucleotide polymorphisms (SNPs) (N = 1,357) identified by genome-wide association in the UK Biobank were ranked into 10 clusters according to the effect on TRL/remnant-C vs LDL-C.
Cardiovascular (CV) disease is the most common cause of death in Europe. Despite proven benefits, use of lipid-lowering therapy remains suboptimal. Treatment goals are often not achieved, even in patients at high risk with atherosclerotic CV disease (ASCVD).
View Article and Find Full Text PDFAims: The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.
Methods And Results: The updated LIFE-CVD (i.
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis.
View Article and Find Full Text PDFBackground: Lipoprotein(a) (Lp(a)) is recognized as a causal factor for coronary heart disease (CHD) but its atherogenicity relative to that of low-density lipoprotein (LDL) on a per-particle basis is indeterminate.
Objectives: The authors addressed this issue in a genetic analysis based on the fact that Lp(a) and LDL both contain 1 apolipoprotein B (apoB) per particle.
Methods: Genome-wide association studies using the UK Biobank population identified 2 clusters of single nucleotide polymorphisms: one comprising 107 variants linked to Lp(a) mass concentration, the other with 143 variants linked to LDL concentration.
The availability of pharmacological approaches able to effectively reduce circulating LDL cholesterol (LDL-C) has led to a substantial reduction in the risk of atherosclerosis-related cardiovascular disease (CVD). However, a residual cardiovascular (CV) risk persists in treated individuals with optimal levels of LDL-C. Additional risk factors beyond LDL-C are involved, and among these, elevated levels of triglycerides (TGs) and TG-rich lipoproteins are causally associated with an increased CV risk.
View Article and Find Full Text PDFAims/hypothesis: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk.
Methods: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex.
Aims: The strength of the relationship of triglyceride-rich lipoproteins (TRL) with risk of coronary heart disease (CHD) compared with low-density lipoprotein (LDL) is yet to be resolved.
Methods And Results: Single-nucleotide polymorphisms (SNPs) associated with TRL/remnant cholesterol (TRL/remnant-C) and LDL cholesterol (LDL-C) were identified in the UK Biobank population. In a multivariable Mendelian randomization analysis, TRL/remnant-C was strongly and independently associated with CHD in a model adjusted for apolipoprotein B (apoB).
BackgroundApolipoprotein C-III (apoC-III) is a regulator of triglyceride (TG) metabolism, and due to its association with risk of cardiovascular disease, is an emergent target for pharmacological intervention. The impact of substantially lowering apoC-III on lipoprotein metabolism is not clear.MethodsWe investigated the kinetics of apolipoproteins B48 and B100 (apoB48 and apoB100) in chylomicrons, VLDL1, VLDL2, IDL, and LDL in patients heterozygous for a loss-of-function (LOF) mutation in the APOC3 gene.
View Article and Find Full Text PDFObjective: Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL.
View Article and Find Full Text PDFNat Rev Cardiol
September 2022
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism.
View Article and Find Full Text PDFCurr Atheroscler Rep
March 2022
Purpose Of Review: Implementation of intensive LDL cholesterol (LDL-C) lowering strategies and recognition of the role of triglyceride-rich lipoproteins (TRL) in atherosclerosis has prompted re-evaluation of the suitability of current lipid profile measurements for future clinical practice.
Recent Findings: At low concentrations of LDL-C (< 1.8 mmol/l/70 mg/dl), the Friedewald equation yields estimates with substantial negative bias.
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD).
View Article and Find Full Text PDFBackground: The phospholipase domain-containing 3 gene (PNPLA3)-148M variant is associated with liver steatosis but its influence on the metabolism of triglyceride-rich lipoproteins remains unclear. Here, we investigated the kinetics of large, triglyceride-rich very-low-density lipoprotein (VLDL), (VLDL ), and smaller VLDL in homozygotes for the PNPLA3-148M variant.
Methods And Results: The kinetics of apolipoprotein (apo) B100 (apoB100) and triglyceride in VLDL subfractions were analysed in nine subjects homozygous for PNPLA3-148M and nine subjects homozygous for PNPLA3-148I (controls).
Elevated levels of low-density lipoprotein cholesterol (LDL-C) are associated with increased risk of coronary heart disease and stroke. Guidelines for the management of dyslipidaemia from the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) were updated in late 2019 in light of recent intervention trials involving the use of innovative lipid-lowering agents in combination with statins. The new guidelines advocate achieving very low LDL-C levels in individuals at highest risk, within the paradigm of 'lower is better'.
View Article and Find Full Text PDFFollowing the neutral results of the dal-OUTCOMES trial, a genome-wide study identified the rs1967309 variant in the adenylate cyclase type 9 () gene on chromosome 16 as being associated with the risk of future cardiovascular events only in subjects taking dalcetrapib, a CETP (cholesterol ester transfer protein) modulator. Homozygotes for the minor A allele (AA) were protected from recurrent cardiovascular events when treated with dalcetrapib, while homozygotes for the major G allele (GG) had increased risk. Here, we present the current state of knowledge regarding the impact of rs1967309 in on clinical observations and biomarkers in dalcetrapib trials and the effects of mouse gene inactivation on cardiovascular physiology.
View Article and Find Full Text PDFAim: To elucidate the impact of liraglutide on the kinetics of apolipoprotein (apo)B48- and apoB100-containing triglyceride-rich lipoproteins in subjects with type 2 diabetes (T2D) after a single fat-rich meal.
Materials And Methods: Subjects with T2D were included in a study to investigate postprandial apoB48 and apoB100 metabolism before and after 16 weeks on l.8 mg/day liraglutide (n = 14) or placebo (n = 4).
Background And Aims: Trial evidence for the benefits of cholesterol-lowering is limited for familial hypercholesterolemia (FH) patients, since they have not been the focus of large outcome trials. We assess statin use in coronary artery disease (CAD) subjects with low-density lipoprotein cholesterol (LDL-C) ≥4.9 mmol/L with or without an FH phenotype.
View Article and Find Full Text PDFObjective: Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes.
View Article and Find Full Text PDFGenetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.
View Article and Find Full Text PDF