Background: Radiographic measurements of limb alignment in skeletally immature patients with anterior cruciate ligament (ACL) tears are frequently used for surgical decision-making, preoperative planning, and postoperative monitoring of skeletal growth. However, the interrater and intrarater reliability of these radiographic characteristics in this patient population is not well documented.
Hypothesis: Excellent reliability across 4 raters will be demonstrated for all digital measures of length, coronal plane joint orientation angles, mechanical axis, and tibial slope in skeletally immature patients with ACL tears.
Global biological datasets generated by genomics, transcriptomics, and proteomics provide new approaches to understanding the relationship between the genome and the synapse. Combined transcriptome analysis and multielectrode recordings of neuronal network activity were used in mouse embryonic primary neuronal cultures to examine synapse formation and activity-dependent gene regulation. Evidence for a coordinated gene expression program for assembly of synapses was observed in the expression of 642 genes encoding postsynaptic and plasticity proteins.
View Article and Find Full Text PDFThe cellular complexity of the brain (some estimate that there are up to 10(3) different cell types) is exceeded by the synaptic complexity, with each of the approximately 10(11) neurons in the brain having around 10(3)-10(4) synapses. Proteomic studies of the synapse have revealed that the postsynaptic density is the most complex multiprotein structure yet identified, with approximately 10(3) different proteins. Such studies, however, use brain tissue with many different regions and therefore different cell types, and there is clear potential for heterogeneity of protein content at different synapses within and between brain regions.
View Article and Find Full Text PDFCharacterization of the composition of the postsynaptic proteome (PSP) provides a framework for understanding the overall organization and function of the synapse in normal and pathological conditions. We have identified 698 proteins from the postsynaptic terminal of mouse CNS synapses using a series of purification strategies and analysis by liquid chromatography tandem mass spectrometry and large-scale immunoblotting. Some 620 proteins were found in purified postsynaptic densities (PSDs), nine in AMPA-receptor immuno-purifications, 100 in isolates using an antibody against the NMDA receptor subunit NR1, and 170 by peptide-affinity purification of complexes with the C-terminus of NR2B.
View Article and Find Full Text PDF