Publications by authors named "Chris Mathes"

The Safety Pharmacology Society (SPS) held a West Coast Regional Meeting in Foster City, CA on November 14, 2018 at the Gilead Sciences Inc. site. The meeting was attended by scientists from the pharmaceutical and biotechnology industry, contract research organizations (CROs) and academia.

View Article and Find Full Text PDF

The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion.

View Article and Find Full Text PDF

The suitability of an automated patch clamp for the characterization and pharmacological screening of calcium release-activated calcium (CRAC) channels endogenously expressed in RBL-2H3 cells was explored with the QPatch system. CRAC currents (I( CRAC)) are small, and thus precise recordings require high signal-to-noise ratios obtained by high seal resistances. Automated whole-cell establishment resulted in membrane resistances of 1728 +/- 226 MOmega (n = 44).

View Article and Find Full Text PDF

The 2nd Annual Ion Channel Targets (ICT) Conference (by Select Bioscience LLC) was held in Boston on 12-13 September 2006. A healthy mixture of scientists from pharma, biotech and academic sectors attended the meeting. The speaker list reflected this mixture.

View Article and Find Full Text PDF

The QPatch 16 significantly increases throughput for gigaseal patch clamp experiments, making direct measurements in ion channel drug discovery and safety testing feasible. Released to the market in the Autumn of 2004 by Sophion Bioscience, the QPatch originated from work done at NeuroSearch (Denmark) in the early days of automated patch clamp. Today, the QPatch provides many unique features.

View Article and Find Full Text PDF

The authors used the PatchXpress 7000A system to measure compound activity at the hERG channel using procedures that mimicked the "gold-standard" conventional whole-cell patch clamp. A set of 70 compounds, including hERG antagonists with potencies spanning 3 orders of magnitude, were tested on hERG302-HEK cells using protocols aimed at either identifying compound activity at a single concentration or obtaining compound potency from a cumulative concentration dependence paradigm. After exposure to compounds and subsequent washout of the wells to determine reversibility of the block, blockade by a reference compound served as a quality control.

View Article and Find Full Text PDF