Publications by authors named "Chris Ma"

While transesophageal echocardiography (TEE) has traditionally been used in perioperative care, there is growing evidence supporting point of care ultrasound (POCUS) for the anesthesiologist in guiding patient care. It is a quick way to non-invasively evaluate hemodynamically unstable patients and ascertain their state of shock, determine volume status, and guide resuscitation in cardiac arrest. In addition, through use of POCUS, the anesthesiologist is able to identify signs of chronic heart disease to provide a more tailored and safer approach to perioperative care.

View Article and Find Full Text PDF

We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks.

View Article and Find Full Text PDF

The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms.

View Article and Find Full Text PDF

The vapor-liquid-solid (VLS) process is a fundamental mechanism for the growth of nanowires, in which a small size (5-100 nm in diameter), high melting point metal (such as gold and iron) catalyst particle directs the nanowire's growth direction and defines the diameter of the crystalline nanowire. In this article, we show that the large size (5-50 microm in diameter), low melting point gallium droplets can be used as an effective catalyst for the large-scale growth of highly aligned, closely packed silica nanowire bunches. Unlike any previously observed results using gold or iron as catalyst, the gallium-catalyzed VLS growth exhibits many amazing growth phenomena.

View Article and Find Full Text PDF