Gramicidin A, a topical antibiotic made from alternating L and D amino acids, is characterized by its wide central pore; upon insertion into membranes, it forms channels that disrupts ion gradients. We present helical peptidomimetics with this characteristic wide central pore that have been designed to mimic gramicidin A channels. Mimetics were designed using molecular modeling focused on oligomers of heterochiral dipeptides of proline analogs, in particular azaproline (AzPro).
View Article and Find Full Text PDFAllosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered "undruggable" and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such "cryptic pockets," and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity.
View Article and Find Full Text PDFRelative to the apolipoprotein E (apoE) E3 allele of the gene, apoE4 strongly increases the risk for the development of late-onset Alzheimer's disease. However, apoE4 differs from apoE3 by only a single amino acid at position 112, which is arginine in apoE4 and cysteine in apoE3. It remains unclear why apoE3 and apoE4 are functionally different.
View Article and Find Full Text PDFThe physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA.
View Article and Find Full Text PDFTEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity.
View Article and Find Full Text PDFReversible post-translational modification by poly(ADP-ribose) (PAR) regulates chromatin structure, DNA repair and cell fate in response to genotoxic stress. PAR glycohydrolase (PARG) removes PAR chains from poly ADP-ribosylated proteins to restore protein function and release oligo(ADP-ribose) chains to signal damage. Here we report crystal structures of mammalian PARG and its complex with a substrate mimic that reveal an open substrate-binding site and a unique 'tyrosine clasp' enabling endoglycosidic cleavage of branched PAR chains.
View Article and Find Full Text PDFJ Comput Aided Mol Des
August 2003
Examples of reverse turns as recognition motifs in biological systems can be found in high-resolution crystal structures of antibody-peptide complexes. Development of peptidomimetics is often based on replacing the amide backbone of peptides by sugar rings, steroids, benzodiazepines, or other hetero- and carbocycles. In this approach, the chemical scaffold of the peptide backbone can be replaced while retaining activity as long as the pharmacophoric groups of the peptide side chains stay in relatively the same place; in other words, similar functional groups must overlap in space for interaction with critical receptor sites.
View Article and Find Full Text PDF