Publications by authors named "Chris Lu"

Deep-learning-based localization and mapping approaches have recently emerged as a new research direction and receive significant attention from both industry and academia. Instead of creating hand-designed algorithms based on physical models or geometric theories, deep learning solutions provide an alternative to solve the problem in a data-driven way. Benefiting from the ever-increasing volumes of data and computational power on devices, these learning methods are fast evolving into a new area that shows potential to track self-motion and estimate environmental models accurately and robustly for mobile agents.

View Article and Find Full Text PDF

Over the recent years, WiFi sensing has been rapidly developed for privacy-preserving, ubiquitous human-sensing applications, enabled by signal processing and deep-learning methods. However, a comprehensive public benchmark for deep learning in WiFi sensing, similar to that available for visual recognition, does not yet exist. In this article, we review recent progress in topics ranging from WiFi hardware platforms to sensing algorithms and propose a new library with a comprehensive benchmark, SenseFi.

View Article and Find Full Text PDF

Autonomous vehicles and mobile robotic systems are typically equipped with multiple sensors to provide redundancy. By integrating the observations from different sensors, these mobile agents are able to perceive the environment and estimate system states, e.g.

View Article and Find Full Text PDF

Background: Although the use of PARP inhibitor has received considerable amount of attention in ovarian cancer, PARP inhibitor resistance still emerges with disease progression. PI3K/AKT pathway inhibitors have been proposed to synergize with PARP inhibition to slow tumor growth, but the exact molecular mechanisms are still elusive.

Methods: Utilizing tumor samples from recurrent EOC patients with platinum resistance and prior PARP inhibitor use, Mini PDX and PDX models were established to study the anti-tumor effect of AKT inhibitor (LAE003) and LAE003/PARP inhibitor (Olaparib) in combination.

View Article and Find Full Text PDF

Dynamical models estimate and predict the temporal evolution of physical systems. State-space models (SSMs) in particular represent the system dynamics with many desirable properties, such as being able to model uncertainty in both the model and measurements, and optimal (in the Bayesian sense) recursive formulations, e.g.

View Article and Find Full Text PDF

Current liquid biopsy assays lack sufficient sensitivity to detect copy number loss, which limits the interrogation of critical tumor suppressor gene deletions during cancer progression and treatment. Here we describe a liquid biopsy assay with improved sensitivity for detection of copy number loss in blood samples with low levels of circulating tumor DNA, and demonstrate its utility by profiling , , and genetic loss in metastatic prostate cancer patients.

View Article and Find Full Text PDF

Natural language processing (NLP) plays a vital role in modern medical informatics. It converts narrative text or unstructured data into knowledge by analyzing and extracting concepts. A comprehensive lexical system is the foundation to the success of NLP applications and an essential component at the beginning of the NLP pipeline.

View Article and Find Full Text PDF

Objective: Automated understanding of consumer health inquiries might be hindered by misspellings. To detect and correct various types of spelling errors in consumer health questions, we developed a distributable spell-checking tool, CSpell, that handles nonword errors, real-word errors, word boundary infractions, punctuation errors, and combinations of the above.

Methods: We developed a novel approach of using dual embedding within Word2vec for context-dependent corrections.

View Article and Find Full Text PDF

Concept mapping is important in natural language processing (NLP) for bioinformatics. The UMLS Metathesaurus provides a rich synonym thesaurus and is a popular resource for concept mapping. Query expansion using synonyms for subterm substitutions is an effective technique to increase recall for UMLS concept mapping.

View Article and Find Full Text PDF

LSD1 (Lysine Specific Demethylase1)/KDM1A (Lysine Demethylase 1A), a flavin adenine dinucleotide (FAD)-dependent histone H3K4/K9 demethylase, sustains oncogenic potential of leukemia stem cells in primary human leukemia cells. However, the pro-differentiation and anti-proliferation effects of LSD1 inhibition in acute myeloid leukemia (AML) are not yet fully understood. Here, we report that small hairpin RNA (shRNA) mediated LSD1 inhibition causes a remarkable transcriptional activation of myeloid lineage marker genes (CD11b/ITGAM and CD86), reduction of cell proliferation and decrease of clonogenic ability of human AML cells.

View Article and Find Full Text PDF

The EED (embryonic ectoderm development) subunit of the Polycomb repressive complex 2 (PRC2) plays an important role in the feed forward regulation of the PRC2 enzymatic activity. We recently identified a new class of allosteric PRC2 inhibitors that bind to the H3K27me3 pocket of EED. Multiple assays were developed and used to identify and characterize this type of PRC2 inhibitors.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically.

View Article and Find Full Text PDF

SETDB1 is a histone H3K9 methyltransferase that has a critical role in early development. It is located within a melanoma susceptibility locus and facilitates melanoma formation. However, the mechanism by which SETDB1 regulates tumorigenesis remains unknown.

View Article and Find Full Text PDF

SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks.

View Article and Find Full Text PDF

Previous studies on cancer cell invasion were primarily focused on its migration because these two events were often considered biologically equivalent. Here we found that T24T cells exhibited higher invasion but lower migration abilities than T24 cells. Expression of Rho-GDPases was much lower and expression of SOD2 was much higher in T24T cells than those in T24 cells.

View Article and Find Full Text PDF

The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis.

View Article and Find Full Text PDF

In advanced cancers, the TGF-β pathway acts as an oncogenic factor and is considered to be a therapeutic target. Here using a genome-wide cDNA screen, we identify nuclear receptor NR4A1 as a strong activator of TGF-β signalling. NR4A1 promotes TGF-β/SMAD signalling by facilitating AXIN2-RNF12/ARKADIA-induced SMAD7 degradation.

View Article and Find Full Text PDF

Histone lysine methyltransferase NSD2 (WHSC1/MMSET) is overexpressed frequently in multiple myeloma due to the t(4;14) translocation associated with 15% to 20% of cases of this disease. NSD2 has been found to be involved in myelomagenesis, suggesting it may offer a novel therapeutic target. Here we show that NSD2 methyltransferase activity is crucial for clonogenicity, adherence, and proliferation of multiple myeloma cells on bone marrow stroma in vitro and that NSD2 is required for tumorigenesis of t(4;14)+ but not t(4;14)- multiple myeloma cells in vivo.

View Article and Find Full Text PDF

TGF-β signaling is a therapeutic target in advanced cancers. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a key component mediating pro-oncogenic TGF-β-induced SMAD and non-SMAD signaling. Upon TGF-β stimulation, TRAF4 is recruited to the active TGF-β receptor complex, where it antagonizes E3 ligase SMURF2 and facilitates the recruitment of deubiquitinase USP15 to the TGF-β type I receptor (TβRI).

View Article and Find Full Text PDF

SMAD6 is a crucial feedback inhibitory regulator of bone morphogenetic protein (BMP)/SMAD signalling. Although little is known regarding the post-transcriptional modification of inhibitory SMADs and the mechanism by which their function is regulated. In this study, using a whole proteomic interaction screen for SMAD6, we identified a large putative E2 ubiquitin-conjugating enzyme UBE2O (E2-230K) as a novel interacting protein of SMAD6.

View Article and Find Full Text PDF

Ezh2 (Enhancer of zeste homolog 2) protein is the enzymatic component of the Polycomb repressive complex 2 (PRC2), which represses gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 were identified in diffused large B-cell lymphomas and follicular lymphomas. To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we developed a potent and selective small molecule inhibitor, EI1, which inhibits the enzymatic activity of Ezh2 through direct binding to the enzyme and competing with the methyl group donor S-Adenosyl methionine.

View Article and Find Full Text PDF

The overall power of kinase inhibitors is substantially overshadowed by the acquisition of drug resistance. To address this issue, we systematically assessed the potential of secreted proteins to induce resistance to kinase inhibitors. To this end, we developed a high-throughput platform for screening a cDNA library encoding 3,432 secreted proteins in cellular assays.

View Article and Find Full Text PDF

The stability and membrane localization of the transforming growth factor-β (TGF-β) type I receptor (TβRI) determines the levels of TGF-β signalling. TβRI is targeted for ubiquitylation-mediated degradation by the SMAD7-SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-β signalling.

View Article and Find Full Text PDF

TGF-β members are of key importance during embryogenesis and tissue homeostasis. Smad7 is a potent antagonist of TGF-β family/Smad-mediated responses, but the regulation of Smad7 activity is not well understood. We identified the RING domain-containing E3 ligase RNF12 as a critical component of TGF-β signaling.

View Article and Find Full Text PDF