The influence of carbon nanotube (CNT) dispersions on the electrical properties and noise signal amplitude of VOx films is investigated. For a critical range of the CNT dispersion density on VOx films, the intrinsic properties of the VOx films are modified by the CNTs. The CNT concentrations reported in this work are about 0.
View Article and Find Full Text PDFA reliable, scalable, and inexpensive technology for the fabrication of ordered arrays of metal nanoparticles with large areal coverage on various substrates is presented. The nanoparticle arrays were formed on aluminum substrates using a two-step anodization process. By varying the anodization potential, the pore diameter, inter-pore spacing, and pore ordering in the anodic aluminum oxide (AAO) template were tuned.
View Article and Find Full Text PDFThe electrical impedance characteristics of multi-walled carbon nanotube (MWCNTs) networks were studied as a function of CNT concentrations in the frequency range of 1 kHz-1 MHz. The novelty of this study is that the MWCNTs were not embedded in any polymer matrix and so the response of the device to electrical measurements are attributed to the CNTs in the network without any contribution from a polymer host matrix. Devices with low MWCNT packing density (0.
View Article and Find Full Text PDFThough the positive role of alkali halides in realizing large area growth of transition metal dichalcogenide layers has been validated, the film-growth kinematics has not yet been fully established. This work presents a systematic analysis of the MoSmorphology for films grown under various pre-treatment conditions of the substrate with sodium chloride (NaCl). At an optimum NaCl concentration, the domain size of the monolayer increased by almost two orders of magnitude compared to alkali-free growth of MoS.
View Article and Find Full Text PDFIn this work, we use contrast image processing to estimate the concentration of multi-wall carbon nanotubes (MWCNT) in a given network. The fractal dimension factor (D) of the CNT network that provides an estimate of its geometrical complexity, is determined and correlated to network resistance. Six fabricated devices with different CNT concentrations exhibit D factors ranging from 1.
View Article and Find Full Text PDFThe effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 μm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice.
View Article and Find Full Text PDF