Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding.
View Article and Find Full Text PDFThe synthesis of imidazole fused spirocyclic ketones as templates for acetyl-CoA carboxylase (ACC) inhibitors is reported. By completing the spirocyclic ring closure via divergent pathways, the synthesis of these regioisomers from common intermediates was developed. Through an aldehyde homologation/transmetalation strategy, one isomer was formed selectively.
View Article and Find Full Text PDFActivation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization.
View Article and Find Full Text PDFOur previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) modulate diverse cellular signaling pathways and are important drug targets. Despite the availability of high-resolution structures, the discovery of allosteric modulators remains challenging due to the dynamic nature of GPCRs in native membranes. We developed a strategy to covalently tether drug fragments adjacent to allosteric sites in GPCRs to enhance their potency and enable fragment-based drug screening in cell-based systems.
View Article and Find Full Text PDFPeptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) have revolutionized diabetes therapy, but their use has been limited because they require injection. Herein, we describe the discovery of the orally bioavailable, small-molecule, GLP-1R agonist PF-06882961 (danuglipron). A sensitized high-throughput screen was used to identify 5-fluoropyrimidine-based GLP-1R agonists that were optimized to promote endogenous GLP-1R signaling with nanomolar potency.
View Article and Find Full Text PDFDetermination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water.
View Article and Find Full Text PDFSickle cell disease (SCD) is a genetic disorder caused by a single point mutation (β6 Glu → Val) on the β-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke.
View Article and Find Full Text PDFCyclic peptides have long tantalized drug designers with their potential ability to combine the best attributes of antibodies and small molecules. An ideal cyclic peptide drug candidate would be able to recognize a protein surface like an antibody while achieving the oral bioavailability of a small molecule. It has been hypothesized that such cyclic peptides balance permeability and solubility using their solvent-dependent conformational flexibility.
View Article and Find Full Text PDFA series of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides were identified as small molecule PCSK9 mRNA translation inhibitors. Analogues from this new chemical series, such as 4d and 4g, exhibited improved PCSK9 potency, ADME properties, and in vitro safety profiles when compared to earlier lead structures.
View Article and Find Full Text PDFThe optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes.
View Article and Find Full Text PDFC-X-C chemokine receptor type 7 (CXCR7) is involved in cardiac and immune pathophysiology. We report the discovery of a novel 1,4-diazepine CXCR7 modulator, demonstrating for the first time the role of pharmacological CXCR7 intervention in cardiac repair. Structure-activity-relationship (SAR) studies demonstrated that a net reduction in lipophilicity (log D) and an incorporation of saturated ring systems yielded compounds with good CXCR7 potencies and improvements in oxidative metabolic stability in human-liver microsomes (HLM).
View Article and Find Full Text PDFTargeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver.
View Article and Find Full Text PDFThe chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids.
View Article and Find Full Text PDFThe synthesis and in vivo pharmacokinetic profile of an analogue of cyclosporine is disclosed. An acyclic congener was also profiled in in vitro assays to compare cell permeability. The compounds possess similar calculated and measured molecular descriptors however have different behaviors in an RRCK assay to assess cell permeability.
View Article and Find Full Text PDFMacrocyclic peptides are considered large enough to inhibit "undruggable" targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < AlogP < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by the parallel artificial membrane permeability assay revealed a steep drop-off in apparent passive permeability with increasing size in stark disagreement with current permeation models.
View Article and Find Full Text PDFLysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism.
View Article and Find Full Text PDFThe effect of peptide-to-peptoid substitutions on the passive membrane permeability of an N-methylated cyclic hexapeptide is examined. In general, substitutions maintained permeability but increased conformational heterogeneity. Diversification with nonproteinogenic side chains increased permeability up to 3-fold.
View Article and Find Full Text PDFPurpose: Copper-64 (Cu-64) and Galium-68 (Ga-68) radiolabeled DO3A and NODA conjugates of exendin-4 were used for preclinical imaging of pancreatic β cells via targeting of glucagon-like peptide-1 receptor (GLP-1R).
Procedures: DO3A-VS- and NODA-VS-tagged Cys(40)exendin-4 (DO3A-VS-Cys(40)-exendin-4 and NODA-VS-Cys(40)-exendin-4, respectively) were labeled with Cu-64 and Ga-68 using standard techniques. Biodistribution and dynamic positron emission tomography (PET) were carried out in normal Sprague-Dawley (SD) rats.
Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency.
View Article and Find Full Text PDFA high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure-activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS).
View Article and Find Full Text PDFAcetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections.
View Article and Find Full Text PDFDespite the prevalence of head-to-side chain threonine linkages in natural products, their incorporation has been underexplored in synthetic cyclic peptides. Herein we investigate a cyclic peptide scaffold able to undergo an N-O acyl rearrangement. Upon acylation of the amine with diverse carboxylic acids, the resulting cyclic depsipeptides displayed favorable cellular permeability and a conformation similar to the parent peptide.
View Article and Find Full Text PDFWe report that 4-(3-(benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), which behaves as a positive allosteric modulator at the glucagon-like peptide-1 receptor (GLP-1R), covalently modifies cysteines 347 and 438 in GLP-1R. C347, located in intracellular loop 3 of GLP-1R, is critical to the activity of BETP and a structurally distinct GLP-1R ago-allosteric modulator, N-(tert-butyl)-6,7-dichloro-3-(methylsulfonyl)quinoxalin-2-amine. We further show that substitution of cysteine for phenylalanine 345 in the glucagon receptor is sufficient to confer sensitivity to BETP.
View Article and Find Full Text PDF