Publications by authors named "Chris Liang"

Objective: To evaluate the efficacy and safety of oral vorolanib for the treatment of neovascular (wet) age-related macular degeneration (nAMD).

Methods: In the dose escalation, participants received ascending doses of oral vorolanib (25-100 mg daily). In the dose expansion, participants received recommended doses (25 and 50 mg daily).

View Article and Find Full Text PDF

Vorolanib (CM082) is a multi-targeted tyrosine kinase receptor inhibitor with a short half-life and limited tissue accumulation that has been shown to reduce choroidal neovascularization in rats. In this preclinical study, vorolanib demonstrated competitive binding and inhibitory activities with KDR, PDGFRβ, FLT3, and C-Kit, and inhibited RET and AMPKα1 more weakly than sunitinib, indicating more stringent kinase selectivity. Vorolanib inhibited vascular endothelial growth factor (VEGF)-induced proliferation of human umbilical vein endothelial cells (HUVECs) and HUVEC tube formation .

View Article and Find Full Text PDF

Purpose: Vorolanib is a multi-target tyrosine kinase inhibitor with anti-angiogenic properties. This study aimed to evaluate the tolerability, safety and efficacy of vorolanib when added to checkpoint inhibitors (CPIs) in patients with advanced solid tumors.

Methods: We conducted a phase 1b study of vorolanib (300 or 400 mg orally once daily) plus pembrolizumab or nivolumab using a standard 3 + 3 design to determine the dose-limiting toxicity (DLT), maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D).

View Article and Find Full Text PDF

Importance: Ensartinib, an oral tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), has shown systemic and central nervous system efficacy for patients with ALK-positive non-small cell lung cancer (NSCLC).

Objective: To compare ensartinib with crizotinib among patients with advanced ALK-positive NSCLC who had not received prior treatment with an ALK inhibitor.

Design, Setting, And Participants: This open-label, multicenter, randomized, phase 3 trial conducted in 120 centers in 21 countries enrolled 290 patients between July 25, 2016, and November 12, 2018.

View Article and Find Full Text PDF
Article Synopsis
  • Combination therapy using vorolanib and everolimus shows promise for treating renal cell carcinoma (RCC) by improving patient responses and prolonging progression-free survival, despite the challenges with high doses of everolimus.
  • In a Phase 1 study, the team evaluated various doses of vorolanib alongside a fixed dose of everolimus to identify the maximum tolerated dose and possible side effects.
  • Results indicated that vorolanib at 300 mg daily is safe with everolimus, showing partial responses in some patients and warranting further research into this treatment approach.
View Article and Find Full Text PDF

Objective: This study evaluated the safety and preliminary efficacy of vorolanib, a novel tyrosine kinase inhibitor, for treatment of patients with advanced solid tumors.

Methods: During dose escalation, patients received increasing doses of oral vorolanib (50-250 mg once daily) in cycles of four weeks for up to one year. During dose expansion, patients received recommended doses (100 and 200 mg) in 4-week cycles.

View Article and Find Full Text PDF

Introduction: Despite initial effectiveness of ALK receptor tyrosine kinase inhibitors (TKIs) in patients with ALK+ NSCLC, therapeutic resistance will ultimately develop. Serial tracking of genetic alterations detected in circulating tumor DNA (ctDNA) can be an informative strategy to identify response and resistance. This study evaluated the utility of analyzing ctDNA as a function of response to ensartinib, a potent second-generation ALK TKI.

View Article and Find Full Text PDF

Lessons Learned: Pharmacokinetic results underscore that the vorolanib (X-82) study design was successful without the need for further dose escalation beyond 400 mg once daily (q.d.).

View Article and Find Full Text PDF

Background: A sequential approach, synchronizing cell-cycle specific chemotherapy during VEGFR-TKI treatment breaks, may improve the therapeutic index of this combination therapy. In this study we investigate the safety/tolerability and pharmacodynamic effects of docetaxel used in sequential combination with the novel VEGFR-TKI X-82.

Methods: Patients with advanced solid malignancies underwent 21-day treatment cycles with X-82 administered daily on days 1-14, a treatment break on days 15-20, and docetaxel administered on day 21.

View Article and Find Full Text PDF

Morbidity in advanced prostate cancer patients is largely associated with bone metastatic events. The development of novel therapeutic strategies is imperative in order to effectively treat this incurable stage of the malignancy. In this context, Akt signaling pathway represents a promising therapeutic target able to counteract biochemical recurrence and metastatic progression in prostate cancer.

View Article and Find Full Text PDF

Evaluate safety and determine the recommended phase II dose (RP2D) of ensartinib (X-396), a potent anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI), and evaluate preliminary pharmacokinetics and antitumor activity in a first-in-human, phase I/II clinical trial primarily in patients with non-small cell lung cancer (NSCLC). In dose escalation, ensartinib was administered at doses of 25 to 250 mg once daily in patients with advanced solid tumors; in dose expansion, patients with advanced -positive NSCLC were administered 225 mg once daily. Patients who had received prior ALK TKI(s) and patients with brain metastases were eligible.

View Article and Find Full Text PDF

Importance: An oral treatment for neovascular age-related macular degeneration would be less burdensome than repeated intravitreous injections. X-82 is an oral tyrosine kinase inhibitor active against vascular endothelial growth factor (VEGF) and platelet-derived growth factor.

Objective: To undertake safety testing of oral X-82 administered for the treatment of neovascular AMD.

View Article and Find Full Text PDF

Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models.

View Article and Find Full Text PDF

Purpose: Activating ALK mutations are present in almost 10% of primary neuroblastomas and mark patients for treatment with small-molecule ALK inhibitors in clinical trials. However, recent studies have shown that multiple mechanisms drive resistance to these molecular therapies. We anticipated that detailed mapping of the oncogenic ALK-driven signaling in neuroblastoma can aid to identify potential fragile nodes as additional targets for combination therapies.

View Article and Find Full Text PDF

B cell acute lymphoblastic leukemia (B-ALL) is the most common hematological malignancy diagnosed in children, and blockade of the abnormally activated PI3Kδ displayed promising outcomes in B cell acute or chronic leukemias, but the mechanisms are not well understood. Here we report a novel PI3Kδ selective inhibitor X-370, which displays distinct binding mode with p110δ and blocks constitutively active or stimulus-induced PI3Kδ signaling. X-370 significantly inhibited survival of human B cell leukemia cells in vitro, with associated induction of G1 phase arrest and apoptosis.

View Article and Find Full Text PDF

The anaplastic lymphoma kinase (ALK) and the c-Met receptor tyrosine kinase play essential roles in the pathogenesis in multiple human cancers and present emerging targets for cancer treatment. Here, we describe CM-118, a novel lead compound displaying low nanomolar biochemical potency against both ALK and c-Met with selectivity over>90 human kinases. CM-118 potently abrogated hepatocyte growth factor (HGF)-induced c-Met phosphorylation and cell migration, phosphorylation of ALK, EML4-ALK, and ALK resistance mutants in transfected cells.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR), is deregulated in about 50% of human malignancies and exists in two complexes: mTORC1 and mTORC2. Rapalogs partially inhibit mTORC1 through allosteric binding to mTORC1 and their efficacy is modest as a cancer therapy. A few mTOR kinase inhibitors that inhibit both mTORC1 and mTORC2 have been reported to possess potent anticancer activities.

View Article and Find Full Text PDF

Aberrant forms of the anaplastic lymphoma kinase (ALK) have been implicated in the pathogenesis of multiple human cancers, where ALK represents a rational therapeutic target in these settings. In this study, we report the identification and biological characterization of X-376 and X-396, two potent and highly specific ALK small molecule tyrosine kinase inhibitors (TKIs). In Ambit kinome screens, cell growth inhibition studies, and surrogate kinase assays, X-376 and X-396 were more potent inhibitors of ALK but less potent inhibitors of MET compared to PF-02341066 (PF-1066), an ALK/MET dual TKI currently in clinical trials.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies.

View Article and Find Full Text PDF

A novel series of substituted 3-[3-(aminopropyl)-4,5,6,7-tetrahydro-1H-indol-2-ylmethylene]-1,3-dihydro-indole-2-ones was discovered as potent inhibitors of the non-receptor tyrosine kinase Src and Yes. A structure-activity relationship was developed in order to optimize their potency and selectivity. Syntheses of these compounds are also described herein.

View Article and Find Full Text PDF

To improve the antitumor properties and optimize the pharmaceutical properties including solubility and protein binding of indolin-2-ones, a number of different basic and weakly basic analogues were designed and synthesized. 5-[5-Fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (12b or SU11248) has been found to show the best overall profile in terms of potency for the VEGF-R2 and PDGF-Rbeta tyrosine kinase at biochemical and cellular levels, solubility, protein binding, and bioavailability. 12b is currently in phase I clinical trials for the treatment of cancers.

View Article and Find Full Text PDF

A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed.

View Article and Find Full Text PDF