Dishevelled is a conserved protein that interprets signals received by Frizzled receptors. Using a tandem-affinity purification strategy and mass spectrometry we have identified proteins associated with Dishevelled, including a Cullin-3 ubiquitin ligase complex containing the Broad Complex, Tramtrack and Bric à Brac (BTB) protein Kelch-like 12 (KLHL12). This E3 ubiquitin ligase complex is recruited to Dishevelled in a Wnt-dependent manner that promotes its poly-ubiquitination and degradation.
View Article and Find Full Text PDFBackground: Wnt/beta-catenin signaling regulates many processes during vertebrate development, including patterning of the mesoderm along the dorso-ventral axis and patterning of the neuroectoderm along the anterior-posterior axis during gastrulation. However, relatively little is known about Wnt target genes mediating these effects.
Results: Using zebrafish DNA microarrays, we have identified several new targets of Wnt/beta-catenin signaling, including sp5-like (sp5l, previously called spr2), a zinc-finger transcription factor of the Sp1 family.
Tail formation in vertebrates involves the specification of a population of multipotent precursors, the tailbud, which will give rise to all of the posterior structures of the embryo. Wnts are signaling proteins that are candidates for promoting tail outgrowth in zebrafish, although which Wnts are involved, what genes they regulate, and whether Wnts are required for initiation or maintenance steps in tail formation has not been resolved. We show here that both wnt3a and wnt8 are expressed in the zebrafish tailbud and that simultaneous inhibition of both wnt3a and wnt8 using morpholino oligonucleotides can completely block tail formation.
View Article and Find Full Text PDFWnt/beta-catenin signaling regulates many aspects of early vertebrate development, including patterning of the mesoderm and neurectoderm during gastrulation. In zebrafish, Wnt signaling overcomes basal repression in the prospective caudal neurectoderm by Tcf homologs that act as inhibitors of Wnt target genes. The vertebrate homolog of Drosophila nemo, nemo-like kinase (Nlk), can phosphorylate Tcf/Lef proteins and inhibit the DNA-binding ability of beta-catenin/Tcf complexes, thereby blocking activation of Wnt targets.
View Article and Find Full Text PDF