J Magn Reson Imaging
September 2013
Purpose: To establish procedures for functional MRI (fMRI) in rats without the need for anesthetic agents.
Materials And Methods: Rats were trained to habituate to restraint in a harness and scanner noise. Under anesthesia, rats were then prepared with a cranial implant that permitted stabilization of the head during subsequent imaging experiments.
Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg).
View Article and Find Full Text PDFWe present a novel user-orientated approach to provenance capture and representation for in silico experiments, contrasted against the more systems-orientated approaches that have been typical within the e-Science domain. In our approach, we seek to capture the scientist's reasoning in the form of annotations as an experiment evolves, while using the scientist's terminology in the representation of process provenance. Our user-orientated approach is applied in a case study within the atmospheric chemistry domain: we consider the design, development and evaluation of an electronic laboratory notebook, a provenance capture and storage tool, for iterative model development.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2009
The development and maintenance of benchmark databases within scientific communities is reliant on interactions with database users. We explore the role of semantically enhanced provenance for computational modelling processes that make use of one such database: the master chemical mechanism, a key resource within the atmospheric chemistry community.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
The objective of the present study was to build a dynamic model relating changes in neural responses in rat barrel cortex to an electrical whisker stimulation pulse train of varying frequencies. This work is part of a formal mathematical system currently being developed, which links stimulation to the Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) signal. Neural responses were measured in terms of local field potentials, which were then converted into current source density (CSD) data.
View Article and Find Full Text PDFRats sweep their facial whiskers back and forth to generate tactile sensory information through contact with environmental structure. The neural processes operating on the signals arising from these whisker contacts are widely studied as a model of sensing in general, even though detailed knowledge of the natural circumstances under which such signals are generated is lacking. We used digital video tracking and wireless recording of mystacial electromyogram signals to assess the effects of whisker-object contact on whisking in freely moving animals exploring simple environments.
View Article and Find Full Text PDF