Measurements made with a dilute, non-oriented, gas-phase sample of a selected fenchone enantiomer using circularly polarized synchrotron radiation demonstrate huge chiral asymmetries, approaching 20%, in the angular distribution of photoelectrons ejected from carbonyl C 1s core orbitals. This asymmetry in the forward-backward scattering of electrons along the direction of the incident soft X-ray radiation reverses when either the enantiomer or the left-right handedness of the light polarization is exchanged. Calculations are provided that model and explain the resulting photoelectron circular dichroism with quantitative accuracy up to approximately 7 eV above threshold.
View Article and Find Full Text PDFPhotoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES.
View Article and Find Full Text PDFPhotoelectron circular dichroism (PECD) is investigated in the valence ionization of selected fenchone enantiomers using a photoelectron imaging technique and circularly polarized synchrotron radiation. Theoretical modelling of the results using electron scattering calculations demonstrates that the observed chiral asymmetry in the photoelectron angular distributions depends strongly upon the final state scattering, and upon the quality of the molecular potential used for these calculations. However, very pronounced dependence on the orbital from which ionization occurs is also observed.
View Article and Find Full Text PDFThe photoelectron circular dichroism that arises in the angular distribution of photoelectrons emitted from the carbonyl group in randomly oriented pure enantiomers of carvone, and a number of carvone derivatives, is investigated by continuum multiple scattering calculations. Core ionization of carbonyl C 1s orbitals is examined for six different isopropenyl tail conformations of carvone. These show clear differences of behavior both between axial and equatorial conformations, and between the three rotational conformers of each.
View Article and Find Full Text PDFAn electron imaging technique has been used to study the full angular distribution of valence photoelectrons produced from enantiomerically pure molecular beams of camphor when these are photoionized with circularly polarized light. In addition to the familiar beta parameter, this provides a new chiral term, taking the form of an additional cosine function in the angular distribution which consequently displays a forward-backward electron ejection asymmetry. Several ionization channels have been studied using synchrotron radiation in the 8.
View Article and Find Full Text PDFThe inner-shell C 1s photoionization of randomly oriented molecules of the chiral compound carvone has been investigated using circularly polarized synchrotron radiation up to 30 eV above threshold. Binding energies of the C=O and CH2= carbon 1s orbitals were determined to be 292.8+/-0.
View Article and Find Full Text PDF