Publications by authors named "Chris Hinrichs"

Permutation testing is a non-parametric method for obtaining the max null distribution used to compute corrected p-values that provide strong control of false positives. In neuroimaging, however, the computational burden of running such an algorithm can be significant. We find that by viewing the permutation testing procedure as the construction of a very large permutation testing matrix, T, one can exploit structural properties derived from the data and the test statistics to reduce the runtime under certain conditions.

View Article and Find Full Text PDF

Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer's disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive.

View Article and Find Full Text PDF

Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects.

View Article and Find Full Text PDF

Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics.

View Article and Find Full Text PDF

Multiple Kernel Learning (MKL) generalizes SVMs to the setting where one simultaneously trains a linear classifier and chooses an optimal combination of given base kernels. Model complexity is typically controlled using various norm regularizations on the base kernel mixing coefficients. Existing methods neither regularize nor exploit potentially useful information pertaining to how kernels in the input set 'interact'; that is, higher order kernel-pair relationships that can be easily obtained via unsupervised (similarity, geodesics), supervised (correlation in errors), or domain knowledge driven mechanisms (which features were used to construct the kernel?).

View Article and Find Full Text PDF

Alzheimer's disease (AD) research has recently witnessed a great deal of activity focused on developing new statistical learning tools for automated inference using imaging data. The workhorse for many of these techniques is the support vector machine (SVM) framework (or more generally kernel-based methods). Most of these require, as a first step, specification of a kernel matrix K between input examples (i.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers.

View Article and Find Full Text PDF

We propose a new algorithm for learning kernels for variants of the Normalized Cuts (NCuts) objective - i.e., given a set of training examples with known partitions, how should a basis set of similarity functions be combined to induce NCuts favorable distributions.

View Article and Find Full Text PDF

Diffusion Tensor Imaging (DTI) provides unique information about the underlying tissue structure of brain white matter in vivo, including both the geometry of fiber bundles as well as quantitative information about tissue properties as characterized by measures such as tensor orientation, anisotropy, and size. Our objective in this paper is to evaluate the utility of shape representations of white matter tracts extracted from DTI data for classification of clinically different population groups (here autistic vs control). As a first step, our algorithm extracts fiber bundles passing through approximately marked regions of interest on affinely aligned brain volumes.

View Article and Find Full Text PDF

Structural and functional brain images are playing an important role in helping us understand the changes associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started investigating their utility for diagnosis purposes. This line of research has shown promising results where methods from machine learning (such as Support Vector Machines) have been used to identify AD-related patterns from images, for use in diagnosing new individual subjects.

View Article and Find Full Text PDF

We study the problem of classifying mild Alzheimer's disease (AD) subjects from healthy individuals (controls) using multi-modal image data, to facilitate early identification of AD related pathologies. Several recent papers have demonstrated that such classification is possible with MR or PET images, using machine learning methods such as SVM and boosting. These algorithms learn the classifier using one type of image data.

View Article and Find Full Text PDF