Publications by authors named "Chris Hauton"

Background: Environmentally sensitive pathogens exhibit ecological and evolutionary responses to climate change that result in the emergence and global expansion of well-adapted variants. It is imperative to understand the mechanisms that facilitate pathogen emergence and expansion, as well as the drivers behind the mechanisms, to understand and prepare for future pandemic expansions.

Objective: The unique, rapid, global expansion of a clonal complex of Vibrio parahaemolyticus (a marine bacterium causing gastroenteritis infections) named Vibrio parahaemolyticus sequence type 3 (VpST3) provides an opportunity to explore the eco-evolutionary drivers of pathogen expansion.

View Article and Find Full Text PDF

El Niño events, the warm phase of the El Niño Southern Oscillation, facilitate the movement of warm surface waters eastwards across the Pacific Ocean. Marine organisms transported by these waters can act as biological corridors for water-borne bacteria with attachment abilities. El Niño events have been hypothesized as driving the recent emergence of (Vp) variants, marine bacterium causing gastroenteritis, in South America, but the lack of a robust methodological framework limited any further exploration.

View Article and Find Full Text PDF

The underlying evolutionary mechanisms driving global expansions of pathogen strains are poorly understood. Vibrio parahaemolyticus is one of only two marine pathogens where variants have emerged in distinct climates globally. The success of a Vibrio parahaemolyticus clone (VpST3) in Latin America- the first spread identified outside its endemic region of tropical Asia- provided an invaluable opportunity to investigate mechanisms of VpST3 expansion into a distinct marine climate.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme Marine Heatwaves (MHWs) are increasing in intensity and frequency, adversely affecting bivalve communities like Manila clams.
  • Exposure to non-lethal MHWs for 30 days reduced the clams' energy reserves, triggered stress responses, and impaired reproduction by decreasing egg size, with more significant effects observed in males.
  • The study highlights that MHWs disrupt clams' behavior and physiology on various levels, potentially compromising their overall fitness and the ecosystem services they provide.
View Article and Find Full Text PDF

Background: The genome of the largest known animal virus, the white spot syndrome virus (WSSV) responsible for huge economic losses and loss of employment in aquaculture, suffers from inconsistent annotation nomenclature. Novel genome sequence, circular genome and variable genome length led to nomenclature inconsistencies. Since vast knowledge has already accumulated in the past two decades with inconsistent nomenclature, the insights gained on a genome could not be easily extendable to other genomes.

View Article and Find Full Text PDF

Tri-Butyl Tin (TBT) remains as a legacy pollutant in the benthic environments. Although the toxic impacts and endocrine disruption caused by TBT to gastropod molluscs have been established, the changes in energy reserves allocated to maintenance, growth, reproduction and survival of European oysters Ostrea edulis, a target species of concerted benthic habitat restoration projects, have not been explored. This study was designed to evaluate the effect of TBT chloride (TBTCl) on potential ions and relevant metabolomic pathways and its association with changes in physiological, biochemical and reproductive parameters in O.

View Article and Find Full Text PDF
Article Synopsis
  • - Understanding how climate change affects pathogen evolution is essential, particularly regarding their resilience, adaptive responses, and the rise of dominant variants across diverse genomic backgrounds.
  • - The review introduces a new framework that merges genomic analysis with climate data using a spatiotemporal dataframe, facilitating machine learning applications to study pathogen evolution in relation to climate change.
  • - Recommendations include improving metadata collection for genomic data submissions, which will enhance public health strategies and early-warning systems to better manage potential health risks posed by evolving pathogens.
View Article and Find Full Text PDF

Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts.

View Article and Find Full Text PDF

In response to the continuous variation of environmental parameters, species must be able to adjust their physiology to overcome stressful conditions, a process known as acclimatization. Numerous laboratory studies have been conducted to understand and describe the mechanisms of acclimation to one environmental stressor (e.g.

View Article and Find Full Text PDF

The decline of the European flat oyster Ostrea edulis represents a loss to European coastal economies both in terms of food security and by affecting the Good Environmental Status of the marine environment as set out by the European Council's Marine Strategy Framework Directive (2008/56/EC). Restoration of O. edulis habitat is being widely discussed across Europe, addressing key challenges such as the devastating impact of the haplosporidian parasite Bonamia ostreae.

View Article and Find Full Text PDF

Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome, is one of the most destructive pathogens of freshwater fishes. To date, the disease has been reported from over 160 fish species in 20 countries and notably, this is the first non-salmonid disease that has resulted in major impacts globally. In particular, Indian major carps (IMCs) are highly susceptible to this disease.

View Article and Find Full Text PDF

Prophenoloxidase (proPO) is very important to protect the invertebrates from microbial infections. Our previous studies revealed that proPO was up-regulated in WSSV-injected Macrobrachium rosenbergii and is responsible for protecting M. rosenbergii from WSSV.

View Article and Find Full Text PDF

Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection.

View Article and Find Full Text PDF

Climate warming is altering the distribution of species, producing range shifts and promoting local extinctions. There is an urgent need to understand the underlying mechanisms that influence the persistence of populations across a species' distribution range in the face of global warming. Ocenebra erinaceus is a marine gastropod that exhibits high intraspecific variability in maternal investment and physiological capacity during early stages, which suggests local adaptation to natal environmental conditions.

View Article and Find Full Text PDF

The haplosporidian parasite Bonamia exitiosa was detected using PCR in four adult and six larval brood samples of the European flat oyster Ostrea edulis from the Solent, UK. This represents the second reported detection of this parasite along the south coast of England. Adult oysters were collected and preserved from seabed populations or restoration broodstock cages between 2015 and 2018.

View Article and Find Full Text PDF

Climate warming can affect the developmental rate and embryonic survival of ectothermic species. However, it is largely unknown if the embryos of populations from different thermal regimes will respond differently to increased warming, potentially due to adaptations to natal environmental conditions. The effects of temperature on respiration rates and oxygen content of the intracapsular fluid were studied during the intracapsular development of Ocenebra erinaceus in two subtidal populations, one from the middle of their geographic distribution, the Solent, UK and another towards the southern portion: Arcachon, France.

View Article and Find Full Text PDF

Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.

View Article and Find Full Text PDF

In recent years, the importance of viral and host microRNAs (miRNAs) in mediating viral replication and control of host cellular machinery, has been realised and increasing efforts have been taken in order to understand the interactions of miRNAs from host and pathogen during infection. However, all existing studies has thus far been conducted in controlled experimental conditions and the veracity of these data for field conditions are yet to be established. In this framework, small RNA sequencing was performed to identify the miRNAs involved in shrimp (Penaeus vannamei) immune responses under two different WSSV infection conditions of natural infection and experimentally challenged conditions.

View Article and Find Full Text PDF

Throughout Europe, populations of Ostrea edulis have been in decline since the 1970s. Temperature has an important influence on physiological, biochemical and reproductive attributes of oysters. It is also the most easily modulated environmental factor in hatcheries, so it is useful to understand the implications of temperature variation in driving gametogenesis and sex development in a protandrous sequential hermaphrodites such as O.

View Article and Find Full Text PDF

Marine crabs inhabit shallow coastal/estuarine habitats particularly sensitive to climate change, and yet we know very little about the diversity of their responses to environmental change. We report the effects of a rarely studied, but increasingly prevalent, combination of environmental factors, that of near-future pCO (~1000 µatm) and a physiologically relevant 20% reduction in salinity. We focused on two crab species with differing abilities to cope with natural salinity change, and revealed via physiological and molecular studies that salinity had an overriding effect on ion exchange in the osmoregulating shore crab, Carcinus maenas.

View Article and Find Full Text PDF

Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure.

View Article and Find Full Text PDF

Parasitic and commensal species can impact the structure and function of ecological communities and are typically highly specialized to overcome host defences. Here, we report multiple instances of a normally free-living species, the blue mussel Linnaeus, 1758, inhabiting the branchial chamber of the shore crab (Linnaeus, 1758) collected from widely separated geographical locations. A total of 127 were examined from four locations in the English Channel, one location in the Irish Sea and two locations at the entrance of the Baltic Sea.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how hydrostatic pressure affects the depth distribution and metabolic functions of lithodid crabs, suggesting that physiological limitations may restrict their range in deeper waters.
  • Heart rate decreases and oxygen consumption varies with increasing hydrostatic pressure, indicating potential metabolic constraints as depth increases.
  • The findings highlight the importance of considering hydrostatic pressure in ecological models to better understand how climate change might alter marine species' distributions.
View Article and Find Full Text PDF