Publications by authors named "Chris H Rycroft"

We propose a dimensionless bendability parameter, ε^{-1}=[(h/W)^{2}T^{-1}]^{-1}, for wrinkling of thin, twisted ribbons with thickness h, width W, and tensional strain T. Bendability permits efficient collapse of data for wrinkle onset, wavelength, critical stress, and residual stress, demonstrating longitudinal wrinkling's primary dependence on this parameter. This parameter also allows us to distinguish the highly bendable range (ε^{-1}>20) from moderately bendable samples (ε^{-1}∈(0,20]).

View Article and Find Full Text PDF

The adaptive dynamics of evolving microbial populations takes place on a complex fitness landscape generated by epistatic interactions. The population generically consists of multiple competing strains, a phenomenon known as clonal interference. Microscopic epistasis and clonal interference are central aspects of evolution in microbes, but their combined effects on the functional form of the population's mean fitness are poorly understood.

View Article and Find Full Text PDF

We develop an irregular lattice mass-spring model to simulate and study the deformation modes of a thin elastic ribbon as a function of applied end-to-end twist and tension. Our simulations reproduce all reported experimentally observed modes, including transitions from helicoids to longitudinal wrinkles, creased helicoids and loops with self-contact, and transverse wrinkles to accordion self-folds. Our simulations also show that the twist angles at which the primary longitudinal and transverse wrinkles appear are well described by various analyses of the Föppl-von Kármán equations, but the characteristic wavelength of the longitudinal wrinkles has a more complex relationship to applied tension than previously estimated.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood.

View Article and Find Full Text PDF

Many viruses block host gene expression to take over the infected cell. This process, termed host shutoff, is thought to promote viral replication by preventing antiviral responses and redirecting cellular resources to viral processes. Several viruses from divergent families accomplish host shutoff through RNA degradation by endoribonucleases.

View Article and Find Full Text PDF

Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC).

View Article and Find Full Text PDF

Materials with target nonlinear mechanical response can support the design of innovative soft robots, wearable devices, footwear, and energy-absorbing systems, yet it is challenging to realize them. Here, mechanical metamaterials based on hinged quadrilaterals are used as a platform to realize target nonlinear mechanical responses. It is first shown that by changing the shape of the quadrilaterals, the amount of internal rotations induced by the applied compression can be tuned, and a wide range of mechanical responses is achieved.

View Article and Find Full Text PDF

The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo's periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex.

View Article and Find Full Text PDF

We present a numerical method specifically designed for simulating three-dimensional fluid-structure interaction (FSI) problems based on the reference map technique (RMT). The RMT is a fully Eulerian FSI numerical method that allows fluids and large-deformation elastic solids to be represented on a single fixed computational grid. This eliminates the need for meshing complex geometries typical in other FSI approaches and greatly simplifies the coupling between fluid and solids.

View Article and Find Full Text PDF

As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper.

View Article and Find Full Text PDF

Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing.

View Article and Find Full Text PDF

Molecular dynamics simulations frequently employ periodic boundary conditions where the positions of the periodic images are manipulated in order to apply deformation to the material sample. For example, Lees-Edwards conditions use moving periodic images to apply simple shear. Here, we examine the problem of precisely comparing this type of simulation to continuum solid mechanics.

View Article and Find Full Text PDF

Atherosclerotic plaques are focal and tend to occur at arterial bends and bifurcations. To quantitatively monitor the local changes in the carotid vessel-wall-plus-plaque thickness (VWT) and compare the VWT distributions for different patients or for the same patients at different ultrasound scanning sessions, a mapping technique is required to adjust for the geometric variability of different carotid artery models. In this work, we propose a novel method called density-equalizing reference map (DERM) for mapping 3D carotid surfaces to a standardized 2D carotid template, with an emphasis on preserving the local geometry of the carotid surface by minimizing the local area distortion.

View Article and Find Full Text PDF

Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impasse by augmenting the experimental dataset with synthetically generated data of a much simpler sister system.

View Article and Find Full Text PDF

Many viruses shut off host gene expression to inhibit antiviral responses. Viral proteins and host proteins required for viral replication are typically spared in this process, but the mechanisms of target selectivity during host shutoff remain poorly understood. Using transcriptome-wide and targeted reporter experiments, we demonstrate that the influenza A virus endoribonuclease PA-X usurps RNA splicing to selectively target host RNAs for destruction.

View Article and Find Full Text PDF

Insect wings are typically supported by thickened struts called veins. These veins form diverse geometric patterns across insects. For many insect species, even the left and right wings from the same individual have veins with unique topological arrangements, and little is known about how these patterns form.

View Article and Find Full Text PDF

Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability.

View Article and Find Full Text PDF

The primary mode of failure in disordered solids results from the formation and persistence of highly localized regions of large plastic strains known as shear bands. Continuum-level field theories capable of predicting this mechanical response rely upon an accurate representation of the initial and evolving states of the amorphous structure. We perform molecular dynamics simulations of a metallic glass and propose a methodology for coarse graining discrete, atomistic quantities, such as the potential energies of the elemental constituents.

View Article and Find Full Text PDF

An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time.

View Article and Find Full Text PDF

Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV). Previous studies indicated that cleavage of messenger RNAs (mRNA) by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts.

View Article and Find Full Text PDF

Cell-matrix and cell-cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular tissue architecture on mechanical properties of the epithelial component of the mammary acinus.

View Article and Find Full Text PDF

Cells and multicellular structures can mechanically align and concentrate fibers in their ECM environment and can sense and respond to mechanical cues by differentiating, branching, or disorganizing. Here we show that mammary acini with compromised structural integrity can interconnect by forming long collagen lines. These collagen lines then coordinate and accelerate transition to an invasive phenotype.

View Article and Find Full Text PDF

Crystalline porous materials have many applications, including catalysis and separations. Identifying suitable materials for a given application can be achieved by screening material databases. Such a screening requires automated high-throughput analysis tools that characterize and represent pore landscapes with descriptors, which can be compared using similarity measures in order to select, group and classify materials.

View Article and Find Full Text PDF

Quantitative understanding of the fracture toughness of metallic glasses, including the associated ductile-to-brittle (embrittlement) transitions, is not yet available. Here, we use a simple model of plastic deformation in glasses, coupled to an advanced Eulerian level set formulation for solving complex free-boundary problems, to calculate the fracture toughness of metallic glasses as a function of the degree of structural relaxation corresponding to different annealing times near the glass temperature. Our main result indicates the existence of an elastoplastic crack tip instability for sufficiently relaxed glasses, resulting in a marked drop in the toughness, which we interpret as annealing-induced embrittlement transition similar to experimental observations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session62cklkhhegm289ea6jqqr2ded2ffbfe3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once