Publications by authors named "Chris Guthrie"

Brain lesions composed of pathological tau help to drive neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we identified the mammalian suppressor of tauopathy 2 () gene as a modifier of susceptibility to tau toxicity in two mouse models of tauopathy. Transgenic PS19 mice overexpressing tau, a model of AD, and lacking the gene exhibited decreased learning and memory deficits, reduced neurodegeneration, and reduced accumulation of pathological tau compared to PS19 tau transgenic mice expressing Conversely, overexpression in 4RTauTg2652 tau transgenic mice increased pathological tau deposition and promoted the neuroinflammatory response to pathological tau.

View Article and Find Full Text PDF

Objective: Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention.

View Article and Find Full Text PDF

Background: Tauopathies, including Alzheimer's disease and frontotemporal dementia, are diseases characterized by the formation of pathological tau protein aggregates in the brain and progressive neurodegeneration. Presently no effective disease-modifying treatments exist for tauopathies.

Methods: To identify drugs targeting tau neurotoxicity, we have used a Caenorhabditis elegans model of tauopathy to screen a drug library containing 1120 compounds approved for human use for the ability to suppress tau-induced behavioral effects.

View Article and Find Full Text PDF

Tauopathies are neurodegenerative diseases, including AD (Alzheimer's disease) and FTLD-T (tau-positive frontotemporal lobar degeneration), with shared pathology presenting as accumulation of detergent-insoluble hyperphosphorylated tau deposits in the central nervous system. The currently available treatments for AD address only some of the symptoms, and do not significantly alter the progression of the disease, namely the development of protein aggregates and loss of functional neurons. The development of effective treatments for various tauopathies will require the identification of common mechanisms of tau neurotoxicity, and pathways that can be modulated to protect against neurodegeneration.

View Article and Find Full Text PDF

Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability.

View Article and Find Full Text PDF

Lesions containing abnormal aggregated tau protein are one of the diagnostic hallmarks of Alzheimer's disease (AD) and related tauopathy disorders. How aggregated tau leads to dementia remains enigmatic, although neuronal dysfunction and loss clearly contribute. We previously identified sut-2 as a gene required for tau neurotoxicity in a transgenic Caenorhabditis elegans model of tauopathy.

View Article and Find Full Text PDF

Lesions containing aggregated and hyperphosphorylated tau protein are characteristic of neurodegenerative tauopathies. We have developed a cellular model of pathological tau deposition and clearance by overexpressing wild type human tau in HEK293 cells. When proteasome activity is inhibited, HEK293/tau cells accumulate tau protein in structures that bear many of the hallmarks of aggresomes.

View Article and Find Full Text PDF

Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In addition, mutations in human TDP-43 cause ALS.

View Article and Find Full Text PDF

We previously developed a transgenic Caenorhabditis elegans model of human tauopathy disorders by expressing human tau in nematode worm neurons to explore genetic pathways contributing to tau-induced neurodegeneration. This animal model recapitulates several hallmarks of human tauopathies, including altered behaviour, accumulation of detergent-insoluble phosphorylated tau protein and neurodegeneration. To identify genes required for tau neurotoxicity, we carried out a forward genetic screen for mutations that suppress tau neurotoxicity.

View Article and Find Full Text PDF

Expression of human tau in Caenorhabditis elegans neurons causes accumulation of aggregated tau leading to neurodegeneration and uncoordinated movement. We used this model of human tauopathy disorders to screen for genes required for tau neurotoxicity. Recessive loss-of-function mutations in the sut-2 locus suppress the Unc phenotype, tau aggregation and neurodegenerative changes caused by human tau.

View Article and Find Full Text PDF

The human 5-hydroxytryptamine 7 (5-HT(7)) serotonin receptor is a class A G-protein coupled receptor that has three isoforms, 5-HT(7(a)), 5-HT(7(b)), and 5-HT(7(d)), which are produced by alternative splicing. The 5-HT(7) receptors are expressed in discrete areas of the brain and in both vascular and gastrointestinal smooth muscle. Central nervous system 5-HT(7) receptors may play a role in mood and sleep disorders.

View Article and Find Full Text PDF