Evolution-in-Materio is a computational paradigm in which an algorithm reconfigures a material's properties to achieve a specific computational function. This article addresses the question of how successful and well performing Evolution-in-Materio processors can be designed through the selection of nanomaterials and an evolutionary algorithm for a target application. A physical model of a nanomaterial network is developed which allows for both randomness, and the possibility of Ohmic and non-Ohmic conduction, that are characteristic of such materials.
View Article and Find Full Text PDFNitrate pollution in oxygenated karst aquifers is common due to nitrification and anthropogenic inputs. However, the shift of nitrogen sources influenced by enhanced rural tourism activities and land use changes are not well understood. In this study, hydrochemistry and dual nitrate isotopes of water samples from a rural karst basin in Chongqing, southwestern China were employed to investigate the nitrate fate and its decadal change during the periods from 2007-2008 and 2017-2019.
View Article and Find Full Text PDFCarbonates Evaporites
December 2021
The United Nations Educational, Scientific, and Cultural Organization (UNESCO) has recognized more than 350 karst areas of global importance through various designations (Biosphere Reserve, World Heritage Sites, Ramsar Sites, and Global Geoparks) with at least one UNESCO protected area with karst in 86 countries (Gunn 2020). In August 2020, Western Kentucky University, the George Wright Society, and the UNESCO Mammoth Cave Biosphere Region hosted . The purpose of this meeting was to enhance communication and the sharing of ideas and resources between major conservation and science programs that protect, study, or manage cave and karst resources, with particular interest to those of international significance.
View Article and Find Full Text PDFNitrate is one of the most common pollution sources in groundwater, particularly in highly vulnerable karst aquifers. The potential for nitrification and denitrification within karst aquifers varies in different settings depending on the extent of anthropogenic inputs, so that accurate identification of nitrate sources can be difficult. Geochemical data and dual nitrate isotopes were measured in this study, incorporating a Bayesian isotopic mixing model, and used to identify nitrate sources, nitrification and denitrification, and quantitatively determine nitrate sources under different extents of anthropogenic inputs in three karst catchments within Chongqing Municipality, SW China: Laolongdong (an urbanized area), Qingmuguan (a suburban village), and Shuifang Spring (a protected natural area).
View Article and Find Full Text PDFKarst aquifers are extremely vulnerable to pollution, including from nitrate. This research advances a systematic evaluation of water quality dynamics and processes in a relatively pristine karst flow system impacted by seasonal tourism, in particular migration and transformation of nitrate. Water samples from the Shuifang Spring basin (Jinfoshan Karst World Heritage Site, Chongqing, China) were collected for analysis of ion concentrations and dual nitrate isotopes.
View Article and Find Full Text PDFKarst aquifers are highly vulnerable to pollution from human activities. Among sources of these contaminants, septic tank effluent can easily pollute karst aquifers, especially concentrated inputs such as those, for example, from tourist hotels. However, the impacts of septic effluent from relatively large, concentrated inputs on karst aquifers have seldom been assessed previously and therefore provide the focus of this study.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2018
We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO gate dielectric and a hybrid multilayer channel consisting of the heterojunction InO/ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm/(V s)) with appreciable current on/off ratios (≈10) and an external quantum efficiency of 2 × 10% at 700 cd/m. The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.
View Article and Find Full Text PDFRecent research has demonstrated that people are especially susceptible to false memory development for suggested misinformation that fills a causal role (i.e., explains some known outcome) (Chrobak & Zaragoza, 2013).
View Article and Find Full Text PDFKinetic Monte Carlo simulations are used to examine the effect of high-energy, 'hot' delocalised charge transfer (HCT) states for donor:acceptor and mixed:aggregate blends, the latter relating to polymer:fullerene photovoltaic devices. Increased fullerene aggregation is shown to enhance charge generation and short-circuit device current - largely due to the increased production of HCT states at the aggregate interface. However, the instances where HCT states are predicted to give internal quantum efficiencies in the region of 50% do not correspond to HCT delocalisation or electron mobility measured in experiments.
View Article and Find Full Text PDFEndoscopic stenting is a relatively new technique for the treatment of post sleeve gastrectomy complications. Partially covered stents are used in this method to minimise the risk of migration but they are associated with difficulties with removal. Patients requiring emergency stenting following sleeve gastrectomy underwent insertion of a partially covered metallic stent.
View Article and Find Full Text PDFMonte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.
View Article and Find Full Text PDFAlthough cancer is largely seen as a disease stemming from genetic mutations, evidence has implicated epigenetic regulation of gene expression as a driving force for tumorigenesis. Epigenetic regulation by histone modification, specifically through polycomb group (PcG) proteins such as EZH2 and BMI-1, is a major driver in stem cell biology and is found to be correlated with poor prognosis in many tumor types. This suggests a role for PcG proteins in cancer stem cells (CSCs).
View Article and Find Full Text PDFWe present spatially resolved photovoltage spectra of a bulk heterojunction solar cell film composed of phase-separated poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers prepared on ITO/PEDOT:PSS and aluminum substrates. Over both PFB- and F8BT-rich domains, the photopotential spectra were found to be proportional to a linear combination of the polymers' absorption spectra. Charge trapping in the film was studied using photopotential fluctuation spectroscopy, in which low-frequency photoinduced electrostatic potential fluctuations were measured by observing noise in the oscillation frequency of a nearby charged atomic force microscope cantilever.
View Article and Find Full Text PDFThe insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10(-16)) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206.
View Article and Find Full Text PDFIn this letter we evaluate the accuracy of the first reaction method (FRM) as commonly used to reduce the computational complexity of mesoscale Monte Carlo simulations of geminate recombination and the performance of organic photovoltaic devices. A wide range of carrier mobilities, degrees of energetic disorder, and applied electric field are considered. For the ranges of energetic disorder relevant for most polyfluorene, polythiophene, and alkoxy poly(phenylene vinylene) materials used in organic photovoltaics, the geminate separation efficiency predicted by the FRM agrees with the exact model to better than 2%.
View Article and Find Full Text PDFIn the absence of sunlight energy, microbial community survival in subterranean aquifers depends on integrated mechanisms of energy and nutrient scavenging. Because karst aquifers are particularly sensitive to agricultural land use impacts due to rapid and direct hydrologic connections for pollutants to enter the groundwater, we examined the fate of an exogenous pesticide (atrazine) into such an aquifer and its impact on microbial ecosystem function. Atrazine and its degradation product deethylatrazine (DEA) were detected in a fast-flowing karst aquifer underlying atrazine-impacted agricultural land.
View Article and Find Full Text PDFIn this letter, we examine the effect of charge trapping on geminate recombination and organic photovoltaic performance using a Monte Carlo model. We alter the degree of charge trapping by considering energetic disorder to be spatially uncorrelated or correlated. On correlating energetic disorder, and so reducing the degree of trapping, it is found that power conversion efficiency of blend and bilayer devices improves by factors of 3.
View Article and Find Full Text PDFThe use of organic photovoltaics (OPVs) could reduce production costs for solar cells because these materials are solution processable and can be manufactured by roll-to-roll printing. The nanoscale texture, or film morphology, of the donor/acceptor blends used in most OPVs is a critical variable that can dominate both the performance of new materials being optimized in the lab and efforts to move from laboratory-scale to factory-scale production. Although efficiencies of organic solar cells have improved significantly in recent years, progress in morphology optimization still occurs largely by trial and error, in part because much of our basic understanding of how nanoscale morphology affects the optoelectronic properties of these heterogeneous organic semiconductor films has to be inferred indirectly from macroscopic measurements.
View Article and Find Full Text PDFThe Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded.
View Article and Find Full Text PDFWe present a combined experimental and theoretical investigation into the charge transport and recombination in dye-sensitized mesoporous TiO2. We electronically probe the photoinduced change in conductivity through in-plane devices while simultaneously optically probing signatures of the charge species. Our quasi-continuous wave technique allows us to build data sets of electron mobility and recombination versus charge density over a wide temperature range.
View Article and Find Full Text PDFBarrett's oesophagus and oesophageal adenocarcinoma, although increasingly common, have no known genetic cause. In this report we describe a family with a remarkable history of Barrett's oesophagus and adenocarcinoma. The index case is a 76-year-old man with adenocarcinoma arising within Barrett's oesophagus.
View Article and Find Full Text PDF