BMC Bioinformatics
April 2008
Background: The systematic capture of appropriately annotated experimental data is a prerequisite for most bioinformatics analyses. Data capture is required not only for submission of data to public repositories, but also to underpin integrated analysis, archiving, and sharing - both within laboratories and in collaborative projects. The widespread requirement to capture data means that data capture and annotation are taking place at many sites, but the small scale of the literature on tools, techniques and experiences suggests that there is work to be done to identify good practice and reduce duplication of effort.
View Article and Find Full Text PDFBackground: Proteomics is rapidly evolving into a high-throughput technology, in which substantial and systematic studies are conducted on samples from a wide range of physiological, developmental, or pathological conditions. Reference maps from 2D gels are widely circulated. However, there is, as yet, no formally accepted standard representation to support the sharing of proteomics data, and little systematic dissemination of comprehensive proteomic data sets.
View Article and Find Full Text PDF