Publications by authors named "Chris G Willcocks"

It is uncertain whether the power of transformer architectures can complement existing convolutional neural networks. A few recent attempts have combined convolution with transformer design through a range of structures in series, where the main contribution of this paper is to explore a parallel design approach. While previous transformed-based approaches need to segment the image into patch-wise tokens, we observe that the multi-head self-attention conducted on convolutional features is mainly sensitive to global correlations and that the performance degrades when these correlations are not exhibited.

View Article and Find Full Text PDF

Computed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, including generation of thin slice multi planar cross-sectional body imaging and 3D reconstructions. However, this involves patients being exposed to a considerable dose of ionising radiation.

View Article and Find Full Text PDF

Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders, generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches.

View Article and Find Full Text PDF

Macular holes are blinding conditions, where a hole develops in the central part of retina, resulting in reduced central vision. The prognosis and treatment options are related to a number of variables, including the macular hole size and shape. High-resolution spectral domain optical coherence tomography allows precise imaging of the macular hole geometry in three dimensions, but the measurement of these by human observers is time-consuming and prone to high inter- and intra-observer variability, being characteristically measured in 2-D rather than 3-D.

View Article and Find Full Text PDF

Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary.

View Article and Find Full Text PDF