Background: "Herbarium X-ray Fluorescence (XRF) Ionomics" is a new quantitative approach for extracting the elemental concentrations from herbarium specimens using handheld XRF devices. These instruments are principally designed for dense sample material of infinite thickness (such as rock or soil powder), and their built-in algorithms and factory calibrations perform poorly on the thin dry plant leaves encountered in herbaria. While empirical calibrations have been used for 'correcting' measured XRF values post hoc, this approach has major shortcomings.
View Article and Find Full Text PDFCopper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood.
View Article and Find Full Text PDFBackground: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known.
Methods: A particle-induced X-ray emission (μPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D.
The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.
View Article and Find Full Text PDFContents Summary 432 I. Introduction 433 II. Preparation of plant samples for X-ray micro-analysis 433 III.
View Article and Find Full Text PDFA Geant4 Monte Carlo simulation of the X-ray fluorescence microprobe (XFM) end-station at the Australian Synchrotron has been developed. The simulation is required for optimization of the scan configuration and reconstruction algorithms. As part of the simulation process, a Gaussian beam model was developed.
View Article and Find Full Text PDF• Accumulation of arsenic (As) within plant tissues represents a human health risk, but there remains much to learn regarding the speciation of As within plants. • We developed synchrotron-based fluorescence-X-ray absorption near-edge spectroscopy (fluorescence-XANES) imaging in hydrated and fresh plant tissues to provide laterally resolved data on the in situ speciation of As in roots of wheat (Triticum aestivum) and rice (Oryza sativa) exposed to 2 μM As(V) or As(III). • When exposed to As(V), the As was rapidly reduced to As(III) within the root, with As(V) calculated to be present only in the rhizodermis.
View Article and Find Full Text PDFMany metals and metalloids, jointly termed metal(loid)s, are toxic to plants even at low levels. This has limited the study of their uptake, distribution, and modes of action in plant roots grown at physiologically relevant concentrations. Synchrotron-based X-ray fluorescence microscopy was used to examine metal(loid)s in hydrated cowpea (Vigna unguiculata L.
View Article and Find Full Text PDFDetermining the chemical and biological compositions of the tumour models used in pharmacological studies is crucial for understanding the interactions between the drug molecules and the tumour micro-environment. Conventional techniques for spheroid characterisation require intensive chemical pre-treatments that result in the removal of unbound metabolites. In this study, the spectroscopic techniques, scanning transmission ion microscopy (STIM), proton-induced X-ray emission (PIXE) mapping, scanning X-ray fluorescence microscopy (SXFM), and Fourier transform infrared (FT-IR) imaging were employed to gain complementary information on the compositions of untreated DLD-l cancer cell spheroids.
View Article and Find Full Text PDFA historical self-portrait painted by Sir Arthur Streeton (1867-1943) has been studied with fast-scanning X-ray fluorescence microscopy using synchrotron radiation. One of the technique's unique strengths is the ability to reveal metal distributions in the pigments of underlying brushstrokes, thus providing information critical to the interpretation of a painting. We have applied the nondestructive technique with the event-mode Maia X-ray detector, which has the capability to record elemental maps at megapixels per hour with the full X-ray fluorescence spectrum collected per pixel.
View Article and Find Full Text PDFThe aim of this study was to determine specific distribution of metals in the termite Tumulitermes tumuli (Froggatt) and identify specific organs within the termite that host elevated metals and therefore play an important role in the regulation and transfer of these back into the environment. Like other insects, termites bio-accumulate essential metals to reinforce cuticular structures and utilize storage detoxification for other metals including Ca, P, Mg and K. Previously, Mn and Zn have been found concentrated in mandible tips and are associated with increased hardness whereas Ca, P, Mg and K are accumulated in Malpighian tubules.
View Article and Find Full Text PDFMetals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging.
View Article and Find Full Text PDFX-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens.
View Article and Find Full Text PDFThe phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based x-ray fluorescence microscopy and x-ray absorption spectroscopy, the distribution and speciation of copper (Cu), nickel (Ni), and zinc (Zn) was examined in situ using hydrated roots of cowpea (Vigna unguiculata) exposed to 1.5 μm Cu, 5 μm Ni, or 40 μm Zn for 1 to 24 h.
View Article and Find Full Text PDFThe development of analytical techniques for the measurement of trace elements in cellular compartments of developing teeth remains an important methodological issue in dental research. Recent advances in third generation synchrotron facilities have provided high brilliance X-ray sources that can be effectively used to study trace element distributions in small spatial regions with low detection limits. The present study describes for the first time the application of synchrotron radiation induced X-ray emission (SRIXE) in measuring the distribution of zinc and lead in the ameloblasts of developing Wistar rat teeth.
View Article and Find Full Text PDFBiol Trace Elem Res
November 2005
Lead is one of the most hazardous environmental toxins known. The assessment of lead in dental hard tissues is important in the understanding of its toxic effects on oral tissues and in estimating exposure and body burden in individuals exposed to lead from the environment. However, current information on the uptake and distribution of lead in enamel and dentine is limited.
View Article and Find Full Text PDFAt a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.
View Article and Find Full Text PDF