Pathogen genomics can provide insights into underlying infectious disease transmission patterns, but new methods are needed to handle modern large-scale pathogen genome datasets and realize this full potential. In particular, genetically proximal viruses should be highly informative about transmission events as genetic proximity indicates epidemiological linkage. Here, we leverage pairs of identical sequences to characterise fine-scale transmission patterns using 114,298 SARS-CoV-2 genomes collected through Washington State (USA) genomic sentinel surveillance with associated age and residence location information between March 2021 and December 2022.
View Article and Find Full Text PDFSARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county.
View Article and Find Full Text PDFGenomic data provides useful information for public health practice, particularly when combined with epidemiologic data. However, sampling bias is a concern because inferences from nonrandom data can be misleading. In March 2021, the Washington State Department of Health, USA, partnered with submitting and sequencing laboratories to establish sentinel surveillance for SARS-CoV-2 genomic data.
View Article and Find Full Text PDFSARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county.
View Article and Find Full Text PDFBackground: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.
Methods: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022.
Background: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants.
Methods: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022.
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introductions of viral lineages into the state.
View Article and Find Full Text PDFThe rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state.
View Article and Find Full Text PDFAfter its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States.
View Article and Find Full Text PDFFollowing its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections.
View Article and Find Full Text PDFPurpose: Rh antigens can provoke severe alloimmune reactions, particularly in high-risk transfusion contexts, such as sickle cell disease. Rh antigens are encoded by the paralogs, RHD and RHCE, located in one of the most complex genetic loci. Our goal was to characterize RH genetic variation in multi-ethnic cohorts, with the focus on detecting RH structural variation (SV).
View Article and Find Full Text PDFWe report RNA-Sequencing results on a cohort of patients with single suture craniosynostosis and demonstrate significant enrichment of heterozygous, rare, and damaging variants among key craniosynostosis-related genes. Genetic burden analysis identified a significant increase in damaging variants in ATR, EFNA4, ERF, MEGF8, SCARF2, and TGFBR2. Of 391 participants, 15% were found to have damaging and potentially causal variants in 29 genes.
View Article and Find Full Text PDFBackground: ABO is a blood group system of high clinical significance due to the prevalence of ABO variation that can cause major, potentially life-threatening, transfusion reactions.
Study Design And Methods: Using multiple large-scale next-generation sequence data sets, we demonstrate the application of read-depth approaches to discover previously unsuspected structural variation (SV) in the ABO gene in individuals of African ancestry.
Results: Our analysis of SV in the ABO gene across 6432 exomes reveals a partial deletion in the ABO gene in 32 individuals of African ancestry that predicts a novel O allele.
Accurate natural resource damage assessment necessitates monitoring organisms or communities that respond most sensitively to contaminants. Observational studies have demonstrated a correlation between fluvial heavy metal deposition and hyporheic microbial community structure. To establish a causal relationship between sediment metal content and the structure of colonizing bacterial communities, we performed a controlled field experiment River sediments of 1.
View Article and Find Full Text PDFHeavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2003
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region.
View Article and Find Full Text PDF