Publications by authors named "Chris Fietkiewicz"

Deep brain stimulation (DBS) can ameliorate motor symptoms in Parkinson's disease (PD), but its mechanism remains unclear. This work constructs a multi-scale brain model using the fMRI data from 27 PD patients with subthalamic DBS and 30 healthy controls. The model fits microscopic coupling parameters in the cortico-basal ganglia-thalamic neural loop to match individual connectivity, finding the "push-pull" effect of basal ganglia network.

View Article and Find Full Text PDF

Unlabelled: The dynamical properties of the brain and the dynamics of the body strongly influence one another. Their interaction generates complex adaptive behavior. While a wide variety of simulation tools exist for neural dynamics or biomechanics separately, there are few options for integrated brain-body modeling.

View Article and Find Full Text PDF

Variations in brain activity patterns reveal impairments of motor and cognitive functions in the human brain. Electroencephalogram (EEG) microstates embody brain activity patterns at a microscopic time scale. However, current microstate analysis method can only recognize less than 90% of EEG signals per subject, which severely limits the characterization of dynamic brain activity.

View Article and Find Full Text PDF

Cortical information has great importance to reflect the deep brain stimulation (DBS) effects for Parkinson's disease patients. Using cortical activities to feedback is an available closed-loop idea for DBS. Previous studies have demonstrated the pathological beta (12-35 Hz) cortical oscillations can be suppressed by appropriate DBS settings.

View Article and Find Full Text PDF

Excessive neural synchronization in the cortico-basal ganglia-thalamocortical circuits in the beta (β) frequency range (12-35 Hz) is closely associated with dopamine depletion in Parkinson's disease (PD) and correlated with movement impairments, but the neural basis remains unclear. In this work, we establish a double-oscillator neural mass model for the cortico-basal ganglia-thalamocortical closed-loop system and explore the impacts of dopamine depletion induced changes in coupling connections within or between the two oscillators on neural activities within the loop. Spectral analysis of the neural mass activities revealed that the power and frequency of their principal components are greatly dependent on the coupling strengths between nuclei.

View Article and Find Full Text PDF

Suppression of excessively synchronous beta frequency (12-35 Hz) oscillatory activity in the basal ganglia is believed to correlate with the alleviation of hypokinetic motor symptoms of the Parkinson's disease. Delayed feedback is an effective strategy to interrupt the synchronization and has been used in the design of closed-loop neuromodulation methods computationally. Although tremendous efforts in this are being made by optimizing delayed feedback algorithm and stimulation waveforms, there are still remaining problems in the selection of effective parameters in the delayed feedback control schemes.

View Article and Find Full Text PDF

The benefit of noise in improving the basal ganglia (BG) dysfunctions, especially Parkinsonian state, is explored in this paper. High frequency (≥ 100 Hz) deep brain stimulation (DBS), as a clinical effective stimulation method, has compelling and fantastic results in alleviating the motor symptoms of Parkinson's disease (PD). However, the mechanism of DBS is still unclear.

View Article and Find Full Text PDF

The investigation of the human intelligence, cognitive systems and functional complexity of human brain is significantly facilitated by high-performance computational platforms. In this paper, we present a real-time digital neuromorphic system for the simulation of large-scale conductance-based spiking neural networks (LaCSNN), which has the advantages of both high biological realism and large network scale. Using this system, a detailed large-scale cortico-basal ganglia-thalamocortical loop is simulated using a scalable 3-D network-on-chip (NoC) topology with six Altera Stratix III field-programmable gate arrays simulate 1 million neurons.

View Article and Find Full Text PDF

Enhanced beta (12-30 Hz) oscillatory activity in the basal ganglia (BG) is a prominent feature of the Parkinsonian state in animal models and in patients with Parkinson's disease. Increased beta oscillations are associated with severe dopaminergic striatal depletion. However, the mechanisms underlying these pathological beta oscillations remain elusive.

View Article and Find Full Text PDF

In Parkinson's disease, the enhanced beta rhythm is closely associated with akinesia/bradykinesia and rigidity. An increase in beta oscillations (12-35 Hz) within the basal ganglia (BG) nuclei does not proliferate throughout the cortico-basal ganglia loop in uniform fashion; rather it can be subdivided into two distinct frequency bands, i.e.

View Article and Find Full Text PDF

Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties.

View Article and Find Full Text PDF

An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network.

View Article and Find Full Text PDF

A significant feature of Parkinson's disease (PD) is the inability of the thalamus to respond faithfully to sensorimotor information from the cerebral cortex. This may be the result of abnormal oscillations in the basal ganglia (BG). Deep brain stimulation (DBS) is regarded as an effective method to modulate these pathological brain rhythmic activities.

View Article and Find Full Text PDF

A generalized predictive closed-loop control strategy to improve the basal ganglia activity patterns in Parkinson's disease (PD) is explored in this paper. Based on system identification, an input-output model is established to reveal the relationship between external stimulation and neuronal responses. The model contributes to the implementation of the generalized predictive control (GPC) algorithm that generates the optimal stimulation waveform to modulate the activities of neuronal nuclei.

View Article and Find Full Text PDF