Publications by authors named "Chris Felshia S"

Authentication of true (genuine) cow leathers is in high demand to promote merchandise and economic growth. The present study employs RT-PCR-based TaqMan assay to facilitate the identification. Species-specific primers and probes were designed utilizing the existing NCBI data on mitochondrial DNA (mtDNA) genes, particularly the cytochrome b region (Cyt b).

View Article and Find Full Text PDF

The present study highlights the comparative catalytic removal of 2,4,6-trichlorophenol (TCP) in the aqueous phase by binary nanoparticles in free as well as entangled forms. In brief, binary nanoparticles comprising Fe-Ni are prepared, characterized, and subsequently entangled in reduced graphene oxide (rGO) for better performances. Optimization studies on the mass of free and rGO-entangled binary nanoparticles with respect to TCP concentration and other environmental factors were carried out.

View Article and Find Full Text PDF

In the present study, the styrene metabolic profile of three aerobic bacterial isolates explored in a batch mode study. The isolates found application in the management of elachates in the waste dump yard. These three bacterial species have different origins and were studied as a single and mixed consortia.

View Article and Find Full Text PDF

The present study explores the preparation, characterization and reusability efficacy of an amine-functionalized graphene oxide and polyphenol oxidase complex for the removal of phenol from aqueous phase. In brief, graphene oxide (GO) is synthesized according to modified Hummer's method using graphite powder and functionalized with amine using the Bucherer's method (GO-NH). Partially purified polyphenol oxidase (PP-PPO) enzyme extracted from is used for the preparation of the complex.

View Article and Find Full Text PDF

2,4-Dichlorophenol (2,4-DCP) is a priority pollutant according to US Environmental Protection Agency. Its use in various chemical industries and its presence in the effluent necessitate effective removal studies. The present study focuses on degradation of 2,4-DCP by phenol adapted bacteria strain SL10 (MTCC 25059) at a relatively faster rate.

View Article and Find Full Text PDF

The present study exemplifies phenol degradation efficacy of the free and encapsulated bacterial isolate, explored the degradation kinetics and storage stability in detail. In brief, isolation, identification and phenol degradation potential of the bacterial made from wastewater treated sludge samples. The organism identified as B.

View Article and Find Full Text PDF