Aims: The potential of mechanistic biomarkers to improve prediction of drug-induced liver injury (DILI) and hepatic regeneration is widely acknowledged. We sought to determine reference intervals for new biomarkers of DILI and regeneration, as well as to characterize their natural variability and impact of diurnal variation.
Methods: Serum samples from 227 healthy volunteers were recruited as part of a cross-sectional study; of these, 25 subjects had weekly serial sampling over 3 weeks, while 23 had intensive blood sampling over a 24h period.
Flucloxacillin is a β-lactam antibiotic associated with a high incidence of drug-induced liver injury. Although expression of HLA-B*57:01 is associated with increased susceptibility, little is known of the pathological mechanisms involved in the induction of the clinical phenotype. Irreversible protein modification is suspected to drive the reaction through the provision of flucloxacillin-modified peptides that are presented to T-cells by the protein encoded by the risk allele.
View Article and Find Full Text PDFAdverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds.
View Article and Find Full Text PDFThe development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed.
View Article and Find Full Text PDFRegenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies.
View Article and Find Full Text PDFThe application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells.
View Article and Find Full Text PDFThe field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients.
View Article and Find Full Text PDFEmerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate.
View Article and Find Full Text PDFThis review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways.
View Article and Find Full Text PDFAmongst the different types of adverse drug reactions, drug-induced liver injury is the most prominent cause of patient morbidity and mortality. However, the current available hepatic model systems developed for evaluating safety have limited utility and relevance as they do not fully recapitulate a fully functional hepatocyte, and do not sufficiently represent the genetic polymorphisms present in the population. The rapidly advancing research in stem cells raises the possibility of using human pluripotent stem cells in bridging this gap.
View Article and Find Full Text PDFUnprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria.
View Article and Find Full Text PDFThe normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity.
View Article and Find Full Text PDFThe Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression.
View Article and Find Full Text PDFPrecise control of the level of protein expression in cells can yield quantitative and temporal information on the role of a given gene in normal cellular physiology and on exposure to chemicals and drugs. This is particularly relevant to liver cells, in which the expression of many proteins, such as phase I and phase II drug-metabolizing enzymes, vary widely between species, among individual humans, and on exposure to xenobiotics. The most widely used gene regulatory system has been the tet-on/off approach.
View Article and Find Full Text PDF