Scanning Spreading Resistance Microscopy is a well-established technique for obtaining quantitative two- and three-dimensional carrier profiles in semiconductor devices with sub-nm spatial resolution. However, for sub-100 nm devices, the use of focused ion beam becomes inevitable for exposing the region of interest on a sample cross section. In this work, we investigate the impact of the focused ion beam milling on spreading resistance analysis and we show that the electrical effect of the focused ion beam extends far beyond the amorphous region and depends on the dopant concentration, ion beam energy, impact angle, and current density.
View Article and Find Full Text PDFThe ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve.
View Article and Find Full Text PDF