Publications by authors named "Chris DeMoll"

Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients.

View Article and Find Full Text PDF

Results from clinical studies provide evidence that cognitive changes relatively late in life may be traced to antecedent conditions including diabetes, obesity, a sedentary lifestyle, and an atherogenic diet. As such, several traits of Type 2 diabetes (T2DM) could be considered pathogenic factors of aging, contributing to age-dependent cognitive decline and our susceptibility to Alzheimer's disease. It appears that both the duration of metabolic condition and the age of the individual, together can contribute to the potential impact on peripheral as well as brain health.

View Article and Find Full Text PDF

Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory.

View Article and Find Full Text PDF

The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation).

View Article and Find Full Text PDF