We examine a process of preparing oil-in-water nanoemulsions by quenching (diluting and cooling) precursor microemulsions made with nonionic surfactants and a cosurfactant. The precursor microemulsion structure is varied by changing the concentration of the cosurfactant. Water-continuous microemulsions produce initial nanoemulsion structures that are small and simple, mostly unilamellar vesicles, but microemulsions that are not water-continuous produce initial nanoemulsion structures that are larger and multilamellar.
View Article and Find Full Text PDFTranslation initiation commences with the binding of eIF-4F to the mRNA 5'-end cap. eIF-4F binds the cap structure via its eIF-4E subunit, which is the rate-limiting step for the initiation of translation. This pathway can be inhibited by 4E-binding proteins (4E-BPs).
View Article and Find Full Text PDFDrug release from therapeutic biomedical films such as drug-polymer composite coatings on drug eluting stents is a highly complex and poorly understood process. The dynamics of drug release and the evolution of surface morphology during release have direct impact on the performance of the device. This information is not easily accessible, and there have been few systematic studies to investigate drug release from biomedical coatings in real time.
View Article and Find Full Text PDF