Publications by authors named "Chris C Tanner"

Wastewater treatment ecotechnologies such as constructed wetlands and denitrifying bioreactors are commonly perceived as robust and resilient to shock loading, but this has proved difficult to quantify, particularly when comparing different systems. This study proposes a method of quantifying and comparing performance resilience in response to a standard disturbance. In a side-by-side study we compare the treatment performance of four different configurations of wetlands and denitrifying bioreactors subjected to hydraulic shock loads of five times the standard inflow rate of primary treated sewage for five days.

View Article and Find Full Text PDF

Denitrifying bioreactors using woodchips or other slow-release carbon sources can be an effective method for removing nitrate (NO) from wastewater and tile drainage. However, the ability of these systems to remove fecal microbes from wastewater has been largely uninvestigated. In this study, reductions in fecal indicator bacteria () and viruses (F-specific RNA bacteriophage [FRNA phage]) were analyzed by monthly sampling along a longitudinal transect within a full-scale denitrifying woodchip bioreactor receiving secondary-treated septic tank effluent.

View Article and Find Full Text PDF

A field trial comparing the fate of metals in two parallel stormwater retention ponds, one of which was retrofitted with a Floating Treatment Wetland (FTW), was carried out near Auckland, New Zealand. Results suggest that the FTW increased metal accumulation in the pond sediment especially in summer due to lower sediment Eh, more anoxic water column, neutral pH and greater source of organic matter (OM) induced by the FTW. These factors combined with higher temperature enhanced metal sorption onto OM, flocculation of particulate pollutants, metal sulphide formation and reduced OM degradation and thus limited release of metals.

View Article and Find Full Text PDF

The nitrogen (N) removal efficiency and effluent quality of two parallel stormwater retention ponds, one retrofitted with a floating treatment wetland (FTW) and one without any vegetation, was compared in a field trial. This study shows that inclusion of FTWs in stormwater retention ponds has potential to moderately improve N removal. Median FTW outlet event mean concentrations (EMCs) were lower than median inlet and control pond outlet EMCs for all species of N, except for NH(4)-N.

View Article and Find Full Text PDF

Background And Aims: Plant species composition in wetlands and on lakeshores often shows dramatic zonation, which is frequently ascribed to differences in flooding tolerance. This study compared the growth responses to water depth of three species (Phormium tenax, Carex secta and Typha orientalis) differing in depth preferences in wetlands, using non-linear and quantile regression analyses to establish how flooding tolerance can explain field zonation.

Methodology: Plants were established for 8 months in outdoor cultures in waterlogged soil without standing water, and then randomly allocated to water depths from 0 to 0.

View Article and Find Full Text PDF

Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.

View Article and Find Full Text PDF