Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible.
View Article and Find Full Text PDFHere we introduce scattering-type scanning near-field optical microscopy (s-SNOM) as a novel tool for nanoscale chemical-imaging of sub-cellular organelles, nanomaterials and of the interactions between them. Our setup uses a tuneable mid-infrared laser and a sharp scanning probe to image at a resolution substantially surpassing the diffraction limit. The laser can be tuned to excite vibrational modes of functional groups in biomolecules, ( amide moieties), in a way that enables direct chemical mapping without the need for labelling.
View Article and Find Full Text PDFPurpose: Digistain Index (DI), measured using an inexpensive mid-infrared spectrometer, reflects the level of aneuploidy in unstained tissue sections and correlates with tumor grade. We investigated whether incorporating DI with other clinicopathological variables could predict outcomes in patients with early breast cancer.
Methods: DI was calculated in 801 patients with hormone receptor-positive, HER2-negative primary breast cancer and ≤ 3 positive lymph nodes.
The ability to image cell chemistry at the nanoscale is key for understanding cell biology, but many optical microscopies are restricted by the ~(200-250)nm diffraction limit. Electron microscopy and super-resolution fluorescence techniques beat this limit, but rely on staining and specialised labelling to generate image contrast. It is challenging, therefore, to obtain information about the functional chemistry of intracellular components.
View Article and Find Full Text PDFRecently, so-called "superlenses", made from metamaterials that are structured on a length scale much less than an optical wavelength, have shown impressive diffraction-beating image resolution, but they use materials with negative dielectric responses, and they absorb much of the light in a way that seriously degrades both the resolution and brightness of the image. Here we demonstrate an alternative "quantum metamaterials" (QM) approach that uses materials structured at the nanoscale, i.e.
View Article and Find Full Text PDFThe application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO(2) absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO(2) gas sensor.
View Article and Find Full Text PDFThe interaction between plasmonic resonances, sharp modes, and light in nanoscale plasmonic systems often leads to Fano interference effects. This occurs because the plasmonic excitations are usually spectrally broad and the characteristic narrow asymmetric Fano line-shape results upon interaction with spectrally sharper modes. By considering the plasmonic resonance in the Fano model, as opposed to previous flat continuum approaches, here we show that a simple and exact expression for the line-shape can be found.
View Article and Find Full Text PDF