Philos Trans A Math Phys Eng Sci
May 2023
In this paper, we start by reviewing exchangeability and its relevance to the Bayesian approach. We highlight the predictive nature of Bayesian models and the symmetry assumptions implied by beliefs of an underlying exchangeable sequence of observations. By taking a closer look at the Bayesian bootstrap, the parametric bootstrap of Efron and a version of Bayesian thinking about inference uncovered by Doob based on martingales, we introduce a parametric Bayesian bootstrap.
View Article and Find Full Text PDFSevere falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via the original article.
View Article and Find Full Text PDFGenetic surveillance of malaria parasites supports malaria control programmes, treatment guidelines and elimination strategies. Surveillance studies often pose questions about malaria parasite ancestry (e.g.
View Article and Find Full Text PDFBackground: Exploration and modelling of heterogeneous treatment effects as a function of baseline covariates is an important aspect of precision medicine in randomised controlled trials (RCTs). Randomisation generally guarantees the internal validity of an RCT, but heterogeneity in treatment effect can reduce external validity. Estimation of heterogeneous treatment effects is usually done via a predictive model for individual outcomes, where one searches for interactions between treatment allocation and important patient baseline covariates.
View Article and Find Full Text PDFBackground: Retrospective exploratory analyses of randomised controlled trials (RCTs) seeking to identify treatment effect heterogeneity (TEH) are prone to bias and false positives. Yet the desire to learn all we can from exhaustive data measurements on trial participants motivates the inclusion of such analyses within RCTs. Moreover, widespread advances in machine learning (ML) methods hold potential to utilise such data to identify subjects exhibiting heterogeneous treatment response.
View Article and Find Full Text PDFTranscriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixtures of more than two components.
View Article and Find Full Text PDFWe are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene-phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease.
View Article and Find Full Text PDFBackground: Altered sensitivity to multiple antimalarial drugs is mediated by polymorphisms in , which encodes the multidrug resistance transporter. In Africa the N86Y and D1246Y polymorphisms have been shown to be selected by treatment, with artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) selecting for wild-type and mutant alleles, respectively. However, there has been little study of haplotypes, in part because haplotype analyses are complicated by multiclonal infections.
View Article and Find Full Text PDFIn this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to large data sets. In this regard we find that the formal calculation of the Bayes factor for a dependent-vs.
View Article and Find Full Text PDFWe present a novel Bayesian nonparametric regression model for covariates and continuous response variable ∈ ℝ. The model is parametrized in terms of marginal distributions for and and a regression function which tunes the stochastic ordering of the conditional distributions (). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model.
View Article and Find Full Text PDFUpper- and lower-body fat depots exhibit opposing associations with obesity-related metabolic disease. We defined the relationship between DEXA-quantified fat depots and diabetes/cardiovascular risk factors in a healthy population-based cohort (n = 3,399). Gynoid fat mass correlated negatively with insulin resistance after total fat mass adjustment, whereas the opposite was seen for abdominal fat.
View Article and Find Full Text PDFBackground: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance.
View Article and Find Full Text PDFBackground: In order to better understand cancer as a complex disease with multiple genetic and epigenetic factors, it is vital to model the fundamental biological relationships among these alterations as well as their relationships with important clinical outcomes.
Methods: We develop an integrative network-based Bayesian analysis (iNET) approach that allows us to jointly analyze multi-platform high-dimensional genomic data in a computationally efficient manner. The iNET approach is formulated as an objective Bayesian model selection problem for Gaussian graphical models to model joint dependencies among platform-specific features using known biological mechanisms.
Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations.
View Article and Find Full Text PDFThe stochastic nature of generating eukaryotic transcripts challenges conventional methods for obtaining and analyzing single-cell gene expression data. In order to address the inherent noise, detailed methods are described on how to collect data on multiple genes in a large number of single cells using microfluidic arrays. As part of a study exploring the effect of genotype on Wnt pathway activation, data were collected for 96 qPCR assays on 1440 lymphoblastoid cells.
View Article and Find Full Text PDFSummary: GREVE has been developed to assist with the identification of recurrent genomic aberrations across cancer samples. The exact characterization of such aberrations remains a challenge despite the availability of increasing amount of data, from SNParray to next-generation sequencing. Furthermore, genomic aberrations in cancer are especially difficult to handle because they are, by nature, unique to the patients.
View Article and Find Full Text PDFMetabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively.
View Article and Find Full Text PDFTo understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects.
View Article and Find Full Text PDFBackground: The advent of affinity-based proteomics technologies for global protein profiling provides the prospect of finding new molecular biomarkers for common, multifactorial disorders. The molecular phenotypes obtained from studies on such platforms are driven by multiple sources, including genetic, environmental, and experimental components. In characterizing the contribution of different sources of variation to the measured phenotypes, the aim is to facilitate the design and interpretation of future biomedical studies employing exploratory and multiplexed technologies.
View Article and Find Full Text PDFIn biomarker discovery studies, uncertainty associated with case and control labels is often overlooked. By omitting to take into account label uncertainty, model parameters and the predictive risk can become biased, sometimes severely. The most common situation is when the control set contains an unknown number of undiagnosed, or future, cases.
View Article and Find Full Text PDFWe have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1)H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDF¹H Nuclear Magnetic Resonance spectroscopy (¹H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource.
View Article and Find Full Text PDFStandard techniques for single marker quantitative trait mapping perform poorly in detecting complex interacting genetic influences. When a genetic marker interacts with other genetic markers and/or environmental factors to influence a quantitative trait, a sample of individuals will show different effects according to their exposure to other interacting factors. This paper presents a Bayesian mixture model, which effectively models heterogeneous genetic effects apparent at a single marker.
View Article and Find Full Text PDFMotivation: Identifying the network structure through which genes and their products interact can help to elucidate normal cell physiology as well as the genetic architecture of pathological phenotypes. Recently, a number of gene network inference tools have appeared based on Gaussian graphical model representations. Following this, we introduce a novel Boosting approach to learn the structure of a high-dimensional Gaussian graphical model motivated by the applications in genomics.
View Article and Find Full Text PDF