Introduction: Surgery is currently an effective long-term therapy for morbid obesity and its complications. A variety of surgical procedures can now offer durable and safe weight control as well as previously unrealized full remission of costly comorbidities. This is a preliminary investigation of patient characteristics and outcomes at Bariatric Surgery Centers of Excellence) (BSCOE) hospitals.
View Article and Find Full Text PDFPurpose: Analyses of T-cell mRNA expression profiles in glioblastoma multiforme has not been previously reported but may help to define and characterize the immunosuppressed phenotype in patients with this type of cancer.
Experimental Design: We did microarray studies that have shown significant and fundamental differences in the expression profiles of CD4(+) and CD8(+) T cells and immunosuppressive CD4(+)CD25(+)CD45RO(+)FoxP3(+) regulatory T cells (T(reg)) from normal healthy volunteers compared with patients with newly diagnosed glioblastoma multiforme. For these investigations, we isolated total RNA from enriched CD4(+) and CD8(+) T cell or T(reg) cell populations from age-matched individuals and did microarray analyses.
For the study of malignant glioma, we have previously characterized a highly tumorigenic murine astrocytoma, SMA-560, which arose spontaneously in an inbred, immunocompetent VM/Dk mouse. Using this cell line as a model of murine glioma, we performed DNA microarray analysis of autologous normal murine astroctyes (NMA) and SMA-560 tumor cells grown in monolayer culture or intracranially in syngeneic immunocompetent or immunocompromised hosts in order to determine whether tumors grown in vitro recreate the complex genetic regulation that occurs in vivo. Our findings support our hypothesis that glioma phenotype in vitro may be quite different in vivo and significantly altered by in situ growth factors and other invading cell populations.
View Article and Find Full Text PDFPurpose: We have reported previously that tumors expressing wild-type epidermal growth factor receptor (EGFR) in a murine model are sensitive to the EGFR tyrosine kinase inhibitor gefitinib, whereas tumors expressing mutant EGFR variant III (EGFRvIII) are resistant. Determination of how this differential inhibition occurs may be important to patient selection and treatment criteria, as well as the design of future therapeutics for glioblastoma multiforme.
Experimental Design: We have determined and quantified how treatment with gefitinib at commonly used, noncytotoxic doses affects neoplastic functions ascribed to EGFRvIII, including downstream signaling by Akt, DNA synthesis, and cellular invasion.
Iressa (ZD1839) is a p.o.-active, selective, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that blocks signal transduction pathways implicated in cancer cell proliferation, survival, and host-dependent processes promoting cancer growth.
View Article and Find Full Text PDF